Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history
Tóm tắt
Silvicultural adaptations throughout history resulted in an increasing mitigation efficiency towards storm risk, quantifiable through an increasing conditional value at risk and decreasing average damage loss. Recently recommended silvicultural systems for spruce stands in Central Europe, like the group selection system, showed the highest mitigation efficiency towards storm, compared to past thinning from below or thinning from above systems.
Storms may affect forests and their productivity. Silvicultural systems adapted throughout history to maintain economic performance of forests under storm risk. This paper aims to (i) determine the conditional value at risk (CVaR) as the expected value of the lower 5% quantile of the simulated economic performance distribution of different silvicultural systems under storm risk, (ii) demonstrate the effect of historical cost and price changes on their performance, and (iii) assess their performance considering revenues from multiple ecosystem services. We used an individual-tree growth model to simulate three silvicultural systems, namely thinning from below, thinning from above and group selection. An additive land expectation value is introduced to reflect long-term timber and carbon sequestration revenues. The performance of silvicultural systems under storm risk is assessed, using an empirical storm model combined with Monte Carlo simulations. The group selection system showed the highest CVaR and therefore highest mitigation efficiency towards storm risk. Moreover, it showed the least sensitivity towards historical cost and price changes. Inclusion of other ecosystem services (carbon sequestration) showed minor sensitivity to storm risk. Silvicultural adaptations throughout history resulted in increasing mitigation efficiency towards storm risk. Integration of silvicultural adaptation is crucial in the further development of forest management, especially approaching risks from climate change.
Tài liệu tham khảo
Abetz P (1975) Entscheidungshilfen für die Durchforstung von Fichtenbeständen: Durchforstungshilfe Fi 1975. Merkblätter der forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg
Albrecht A (2009) Sturmschadensanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg. Doctoral thesis, Albert-Ludwigs-University
Albrecht A, Hanewinkel M, Bauhus J, Kohnle U (2012) How does silviculture affect storm damage in forests of south-western Germany?: results from empirical modeling based on long-term observations. Eur J For Res 131:229–247. https://doi.org/10.1007/s10342-010-0432-x
Albrecht A, Fortin M, Kohnle U, Ningre F (2015) Coupling a tree growth model with storm damage modeling—conceptual approach and results of scenario simulations. Environ Model Softw 69:63–76. https://doi.org/10.1016/j.envsoft.2015.03.004
Albrecht AT, Jung C, Schindler D (2019) Improving empirical storm damage models by coupling with high-resolution gust speed data. Agr Forest Meteorol 268:23–31
Amacher GS, Koskela E, Ollikainen M (2010) Economics of forest resources. MIT Press, Cambridge
Brazee RJ (2018) Impacts of declining discount rates on optimal harvest age and land expectation values. J For Econ 31:27–38. https://doi.org/10.1016/j.jfe.2017.06.002
Carbon Pulse (2018) EU ETS: news and intelligence on carbon markets, greenhouse gas pricing and climate policy. https://carbon-pulse.com/52835/
Chang SJ (1998) A generalized Faustmann model for the determination of optimal harvest age. Can J For Res 28:652–659
Creedy J, Wurzbacher AD (2001) The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecol Econ 38:71–83. https://doi.org/10.1016/S0921-8009(01)00148-3
Davies O, Kerr G (2015) Comparing the costs and revenues of transformation to continuous cover forestry for sitka spruce in Great Britain. Forests 6:2424–2449. https://doi.org/10.3390/f6072424
Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. Forest Policy Econ 2:157–166. https://doi.org/10.1016/S1389-9341(01)00045-4
Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwissenschaftliches Centralblatt 121:195–210. https://doi.org/10.1046/j.1439-0337.2002.02030.x
Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77:187–205
Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, de Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17
Endres M (1895) Lehrbuch der Waldwertrechnung und Forststatistik. Springer, Berlin Heidelberg
Faustmann M (1849) Berechnung des Wertes welchen Walboden sowie noch nicht haubare Holzbestande fur die Waldwirtschaft besitzen. Algemeine Forst-and Jagd-Zeitung 15
ForstBW (2014) Richtlinie landesweiter Waldentwicklungstypen. Landesbetrieb Forst Baden-Württemberg, Ministerium für Ländlichen Raum und Verbraucherschutz. http://www.forstbw.de/fileadmin/forstbw_infothek/forstbw_praxis/wet/ForstBW_Waldentwicklung_web.pdf. Accessed 22 Sept 2018
German Central Bank (2017) Kaufkraftvergleiche historischer Geldbeträge. https://www.bundesbank.de/Redaktion/DE/Standardartikel/Statistiken/kaufkraftvergleiche_historischer_geldbetraege.html. Accessed 12 Nov 2017
Griess VC, Knoke T (2013) Bioeconomic modeling of mixed Norway spruce—European beech stands: economic consequences of considering ecological effects. Eur J Forest Res 132:511–522. https://doi.org/10.1007/s10342-013-0692-3
Gutrich J, Howarth RB (2007) Carbon sequestration and the optimal management of New Hampshire timber stands. Ecol Econ 62:441–450. https://doi.org/10.1016/j.ecolecon.2006.07.005
Haight R, Smith DW, Straka JT (1995) Hurricanes and the economics of loblolly pine plantations. For Sci 41:675–688
Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207. https://doi.org/10.1038/nclimate1687
Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P (2014) Vulnerability of uneven-aged forests to storm damage. Forestry 87:525–534. https://doi.org/10.1093/forestry/cpu008
Hartig GL (1791) Anweisung zur Holzzucht für Förster. Neue akademische Buchhandlung, Marburg
Hein S, Herbstritt S, Kohnle U (2007) Auswirkung der Z-Baum-Auslesedurchforstung auf Wachstum, Sortenertrag und Wertleistung im europäischen Fichten-Stammzahlversuch (Picea abies [L.] Karst.) in Südwestdeutschland. Allgemeine Forst und Jagdzeitung 179:192–201
Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas MJ, Tojic K, Vodde F (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701. https://doi.org/10.1051/forest/2009054
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. https://doi.org/10.1016/j.geoderma.2006.09.003
Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, Gadow K (eds) Continuous cover forestry. Springer Netherlands, Dordrecht, pp 167–194
Kublin E, Bösch B (2007) BDAT-das Sorten-und Volumenprogramm. Forestry Research Institute (FVA) of Baden-Württemberg. http://www.fva-bw.de/indexjs.html?, http://www.fva-bw.de/forschung/bui/bdat.html. Accessed 16 Nov 2017
Kuuluvainen T, Tahvonen O, Aakala T (2012) Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. Ambio 41:720–737. https://doi.org/10.1007/s13280-012-0289-y
Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. https://doi.org/10.1016/j.foreco.2009.09.023
Lindroth A, Lagergen F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Chang Biol 15:346–355. https://doi.org/10.1111/j.1365-2486.2008.01719.x
Loisel P (2011) Faustmann rotation and population dynamics in the presence of a risk of destructive events. J For Econ 17:235–247. https://doi.org/10.1016/j.jfe.2011.02.001
Loisel P (2014) Impact of storm risk on Faustmann rotation. Forest Policy Econ 38:191–198. https://doi.org/10.1016/j.forpol.2013.08.002
Lundmark T, Bergh J, Nordin A, Fahlvik N, Poudel BC (2016) Comparison of carbon balances between continuous-cover and clear-cut forestry in Sweden. Ambio 45(Suppl 2):203–213. https://doi.org/10.1007/s13280-015-0756-3
Müller F, Hanewinkel M (2018) Challenging the assumptions of a standard model: how historical triggers in terms of technical innovations, labor costs and timber price change the land expectation value. Forest Policy Econ 95:46–56. https://doi.org/10.1016/j.forpol.2018.07.009
Müller F, Lessa Derci Augustynczik A, Hanewinkel M (2019) Supplementary material for research article “Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history”. V2. Zenodo. [Dataset]. https://doi.org/10.5281/zenodo.2636500
Nagel J, Duda H, Hansen J (2017) Forest simulator BWINPro 7. https://www.nw-fva.de/?id=194. Accessed 4 Oct 2017
Newell RG, Pizer WA (2003) Discounting the distant future: how much do uncertain rates increase valuations? J Environ Econ Manag 46:52–71. https://doi.org/10.1016/S0095-0696(02)00031-1
Newman DH (2002) Forestry’s golden rule and the development of the optimal forest rotation literature. J For Econ 8:5–27. https://doi.org/10.1078/1104-6899-00002
Oxera Consulting LLP (2002) Social time preference rate for use in long-term discounting, London. https://www.oxera.com/publications/a-social-time-preference-for-use-in-long-term-discounting/. Accessed 24 Aug 2018
Pukkala T, Lahde E, Laiho O (2012) Continuous cover forestry in Finland—recent research results. In: Pukkala T, Gadow K (eds) Continuous cover forestry. Springer Netherlands, Dordrecht
Pukkala T, Laiho O, Lähde E (2016) Continuous cover management reduces wind damage. For Ecol Manag 372:120–127. https://doi.org/10.1016/j.foreco.2016.04.014
Rakotoarison H, Loisel P (2017) The Faustmann model under storm risk and price uncertainty: a case study of European beech in northwestern France. Forest Policy Econ 81:30–37. https://doi.org/10.1016/j.forpol.2017.04.012
Reed WJ (1984) The effects of the risk of fire on the optimal rotation of a forest. J Environ Econ Manag 11:180–190. https://doi.org/10.1016/0095-0696(84)90016-0
Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single-tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652. https://doi.org/10.1139/X10-099
Sedjo R, Sohngen B (2012) Carbon sequestration in forests and soils. Ann Rev Resour Econ 4:127–144. https://doi.org/10.1146/annurev-resource-083110-115941
Skog KE (2008) Sequestration of carbon in harvested wood products for the United States. For Prod J 58(6):56–72
Stainback GA, Alavalapati JR (2002) Economic analysis of slash pine forest carbon sequestration in the southern US. J For Econ 8:105–117. https://doi.org/10.1078/1104-6899-00006
Thürig E, Palosuo T, Bucher J, Kaufmann E (2005) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350. https://doi.org/10.1016/j.foreco.2005.02.030
Tonosaki M (2009) Harvested wood products accounting in the post Kyoto commitment period. J Wood Sci 55:390–394. https://doi.org/10.1007/s10086-009-1052-2
Treasury HM (2003) The green book: appraisal and evaluation in central government. The Stationery Office, London
Wäldchen J, Schulze E-D, Schöning I, Schrumpf M, Sierra C (2013) The influence of changes in forest management over the past 200years on present soil organic carbon stocks. For Ecol Manag 289:243–254. https://doi.org/10.1016/j.foreco.2012.10.014
Weitzman ML (2001) Gamma discounting. Am Econ Rev 91:260–271
Yousefpour R, Hanewinkel M (2009) Modelling of forest conversion planning with an adaptive simulation-optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity. Ecol Econ 68:1711–1722. https://doi.org/10.1016/j.ecolecon.2008.12.009