Quantifying the phantom jam externality: the case of an Autobahn section in Germany
Tóm tắt
If not restricted by tolls, private decisions to drive on a highway result in inefficiently high usage which leads to traffic jams. When traffic demand is high, traffic jams can occur simply because of the interaction of vehicle drivers on the road, a phenomenon called phantom jam. The probability of phantom jams occurring increases with traffic flow. Unpriced externalities lead to inefficiently high road usage. We offer a method for quantifying traffic jam externalities and identifying and isolating the phantom jam externality. We examine the method by applying it to a specific highway section in Germany. The maximal congestion externality for the analyzed highway section is about 38 cents per vehicle and kilometer. Congestion charges that are calculated ignoring phantom jam externalities, can only internalize two-thirds of the true externality.
Tài liệu tham khảo
Nakayama A., Fukui M., Kikuchi M., Hasebe K., Nishinari K., Sugiyama Y., Tadaki S., Yukawa S. (2009) Metastability in the formation of an experimental traffic jam. New Journal of Physics 11:083025.
Sugiyama Y., Fukui M., Kikuchi M., Hasebe K., Nakayama A., Nishinari K., Tadaki S., Yukawa S. (2008) Traffic jams without bottlenecks – experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10:033001.
Tadaki S., Kikuchi M., Fukui M., Nakayama A., Nishinari K., Shibata A., Sugiyama Y., Yosida T., Yukawa S. (2013) Phase transition in traffic jam experiments on a circuit. New Journal of Physics 15:103034.
Schönhof M., Helbing D. (2007) Empirical features of congested traffic states and their implications for traffic modeling. Transportation Science 41(2):135–166.
Brilon W., Geistefeldt J., Regler M. (2005) Reliability of freeway traffic flow: A stochastic concept of capacity In: Proceedings of the 16th International Symposium on Transportation and Traffic Theory, 125–144.
Elefteriadou L., Roess R. P., McShane W. R. (1995) Probabilistic nature of breakdown at freeway merge junctions. Transportation Research Record 1484:80–89.
van Essen H., van Wijngaarden L., Schroten A., Sutter D., Bieler C., Maffii S., Brambilla M., Fiorello D., Fermi F., Parolin R., Beyrouty K. E. (2020) Handbook on the external costs of transport Version 2019–1.1. Publications Office of the European Union, Luxembourg.
Arnott R., de Palma A., Lindsey R. (1990) Economics of a bottleneck. Journal of Urban Economics 27:111–130.
Arnott R., de Palma A., Lindsey R. (1993) A structural model of peak-period congestion: A traffic bottleneck with elastic demand. American Economic Review 83(1):161–179.
Small K. A. (2015) The bottleneck model: an assessment and interpretation. Economics of Transportation 4(1–2):110–117.
Vickrey W. S. (1969) Congestion theory and transport investment. American Economic Review 59:251–261.
Xiao L. -L., Huang H. -J., Liu R. (2015) Congestion behavior and tolls in a bottleneck model with stochastic capacity. Transportation Science 49(1):46–65.
Yang H., Hai-Jun H. (1997) Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory. Transportation Research Part B: Methodological 31(6):425–440.
Hall J. D. (2018) Pareto improvements from Lexus lanes: The effects of pricing a portion of the lanes on congested highways. Journal of Public Economics 158:113–125.
Hall J. D., Savage I. (2019) Tolling roads to improve reliability. Journal of Urban Economics 113:103187.
Arnott R. (2013) A bathtub model of downtown traffic congestion. Journal of Urban Economics 76(1):110–121.
Arnott R., Kokoza A., Naji M. (2016) Equilibrium traffic dynamics in a bathtub model: A special case. Economics of Transportation 7-8:38–52.
Fosgerau M. (2015) Congestion in the bathtub. Economics of Transportation 4(4):241–255.
Fosgerau M., Small K. A. (2013) Hypercongestion in downtown metropolis. Journal of Urban Economics 76(1):122–134.
Johnson M. B., 1964On the economics of road congestion. Econometrica 32:137–150.
Pigou A. C. (1920) The Economics of Welfare. Macmillan, London.
Walters A. A. (1961) The theory and measurement of private and social cost of highway congestion. Econometrica 29(4):676–699.
Goldmann K., Sieg G. (2020) Economic implications of phantom traffic jams: evidence from traffic experiments. Transportation Letters 12(6):386–390.
He X., Chen X., Xiong C., Zhu Z., Zhang L. (2016) Optimal time-varying pricing for toll roads under multiple objectives: A simulation-based opimization approach. Transportation Science 51(2):412–426.
Frascaria D., Olver N., Verhoef E. T. (2020) Emergent hypercongestion in Vickrey bottleneck networks. Transportation Research Part B: Methodological 139(523-538):241–247.
Verhoef E. T. (1999) Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing. Regional Science and Urban Economics 29(3):341–369.
Verhoef E. T. (2005) Speed-flow relations and cost functions for congested traffic theory and empirical analysis. Transportation Research Part A 39:792–812.
Brilon W., Geistefeldt J., Zurlinden H. (2007) Implementing the concept of reliability for highway capacity analysis. Transportation Research Record 2027:1–8.
Brilon W., Geistefeldt J. (2010) Überprüfung der Bemessungswerte der HBS für Autobahnabschnitte außerhalb der Knotenpunkte. Forsch Straßenbau Straßenverkehrstechnik 1033:1–52.
Yuan K., Knoop V. L., Leclercq L., Hoogendoorn S. P. (2017) Capacity drop: a comparison between stop-and-go wave and standing queue at lane-drop bottleneck. Transportmetrica B: Transport Dynamics 5(2):145–158.
Batley R., Bates J., Bliemer M., Börjesson M., Bourdon J., Cabral M., Chintakayala P., Choudhury C., Daly A., Dekker T., Drivyla E., Fowkes T., Hess S., Heywood C., Johnson D., Laird J., Mackie P., Parkin J., Sanders S., Sheldon R., Wardman M., Worsley T. (2019) New appraisal values of travel time saving and reliability in Great Britain. Transportation 46(3):583–621.
Hössinger R., Aschauer F., Jara-Díaz S., Jokubauskaite S., Schmid B., Peer S., Axhausen K., Gerike R. (2020) A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments. Transportation 47(3):1439–1475.
Small K., Winston C., Yan J. (2005) Uncovering the distribution of motorists’ preferences for travel time and reliability. Econometrica 73(4):1367–1382.
Brilon W., Geistefeldt J. (2009) Paper presented at the 2ISFO (International Symposium on Freeway and Tollway Operations), Honolulu.
Geistefeldt J. (2016) Assessment of basic freeway segments in the German Highway Capacity Manual HBS 2015 and beyond. Transportation Research Procedia 15:417–425.
Taylor N. B., Bourne N., Notley S. O., Skrobanski G. (2008) Evidence for speed flow relationships In: (Proceedings) European Transport Conference 2008, 1–19.
Hranac R., Sterzin E., Krechmer D., Rakha H., Farzaneh M. (2006) Empirical studies on traffic flow in inclement weather. U.S Department of Transportation - Federal Highway Administration.
Rakha H. (2009) Validation of van Aerde’s simplified steady-state car-following and traffic stream model. Transportation Letters: The International Journal of Transportation Research 1:225–242.
van Aerde M. (1995) Single regime speed-flow-density relationship for congested and uncongested highways. Presented at the 74th TRB annual conference, Paper no. 950802, Washington D.C.
Peer S., Koopmans C. C., Verhoef E. T. (2012) Prediction of travel time variability for cost-benefit analysis. Transportation Research Part A 46(1):79–90.
Arnese P., Hjelkrem O. A. (2018) An estimator for traffic breakdown probability based on classification of transitional breakdown events. Transportation Science 52(3):593–602.
Lorenz M., Elefteriadou L. (2000) A probabilistic approach to defining freeway capacity and breakdown In: Transportation Research Circular EC018: 4th International Symposium on Highway Capacity, Conference Proceedings, 84–95.
Kaplan E. L., Meier P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282):457–481.
Tu H., Li H., van Lint H., van Zuylen H. (2012) Modeling travel time reliability of freeways using risk assessment techniques. Transportation Research Part A 46:1528–1540.
Calvert S. C., Snelder M. (2016) Influence of weather on traffic flow: an extensive stochastic multi-effect capacity and demand analysis. EuropeanTransport 60:1–24.
Hall F. L., Agyemang-Duah K. (1991) Freeway capacity drop and the definition of capacity. Transportation Research Record 1320:91–98.
Treiber M., Kesting A. (2013) Traffic Flow Dynamics. Springer, Berlin Heidelberg.
Chen D., Ahn S., Laval J., Zheng Z. (2014) On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics. Transportation Research Part B 59:117–136.
Chung K., Rudjanakanoknad J., Cassidy M. J. (2007) Relation between traffic density and capacity drop at three freeway bottlenecks. Transportation Research Part B: Methodological 41:82–95.
Srivastava A., Geroliminis N. (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transportation Research Part C 30:161–177.
Highway Capacity Manual (2016) A Guide for Multimodal Mobility Analysis. 6th Edition, Washington.
Ponzlet M. (1996) Auswirkungen von systematischen und umfeldbedingten Schwankungen des Geschwindigkeitsverhaltens und deren Beschreibung in Verkehrsflussmodellen. Lehrstuhl für Verkehrswesen Ruhr-Universität Bochum, Issue 16.
Brilon W., Lohoff J. (2011) Speed-flow models for freeways. Procedia Social and Behavioral Sciences 16:26–36.
BaSt (2012) Zeitbewertung in ökonomischen Planungsrechnungen. Bundesanstalt für Straßenwesen, Bergisch Gladbach.
Abrantes P. A., Wardman M. R. (2011) Meta-analysis of UK values of travel time: An update. Transportation Research Part A: Policy and Practice 45(1):1–17.
Hensher D. A. (2011) Valuation of travel time savings. In: de Palma A., Lindsey R., Quinet E. (eds)A Handbook of Transport Economics, 135–259.. Edwad Elgar Publishing, Cheltenham, Northampton.
Mishra S., Tang L., Ghader S., Mahapatra S., Zhang L. (2018) Estimation and valuation of travel time reliability for transportation planning applications. Case Studies on Transport Policy 6(1):51–62.
Aarts L., van Schagen I. (2006) Driving speed and the risk of road crashes: A review. Accident Analysis and Prevention 38(2):215–224.
Ntziachristos L., Samaras Z. (2000) Speed-dependent representative emission factors for catalyst passenger cars and influencing parameters. Atmospheric Environment 34(27):4611–4619.
Tscharaktschiew S. (2020) Why are highway speed limits really justified? An equilibrium speed choice analysis. Transportation Research Part B: Methodological 138:317–351.
Friedrich B. (2016) The effect of autonomous vehicles on traffic. In: Maurer M., Gerdes J., Lenz B., Winner H. (eds)Autonomous Driving: Technical, Legal and Social Aspects, 317–334.. Springer, Berlin Heidelberg.
Utesch F., Brandies A., Pekezou Fouopi P., Schießl C. (2020) Towards behaviour based testing to understand the black box of autonomous cars. European Transport Research Review 12(1):48.
Verhoef E. T., Rouwendal J., Rietveld P. (1999) Congestion caused by speed differences. Journal of Urban Economics 45(3):533–556.
Coifman B. (54) Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency. Transportation Research Part B: Methodological 78.
BMVI (2016) Methodenhandbuch zum Bundesverkehrswegeplan 2030. Federal Ministry of Transport and Digital Infrastructure, Karlsruhe, Berlin, Waldkirch, München.
Infas, DLR (2010) Mobilität in Deutschland 2008, Ergebnisbericht: Struktur - Aufkommen - Emissionen - Trends, Bonn, Berlin. https://www.bmvi.de/SharedDocs/DE/Anlage/VerkehrUndMobilitaet/mid-2008-ergebnisbericht.pdf.
