Quantifying the dynamics of light tolerance in<scp><i>A</i></scp><i>rabidopsis</i>plants during ontogenesis

Plant, Cell and Environment - Tập 38 Số 12 - Trang 2603-2617 - 2015
Fabrício E. L. Carvalho1, Maxwell A. Ware1, Alexander V. Ruban1
1School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

Tóm tắt

AbstractThe amount of light plants can tolerate during different phases of ontogenesis remains largely unknown. This was addressed here employing a novel methodology that uses the coefficient of photochemical quenching (qP) to assess the intactness of photosystemIIreaction centres. Fluorescence quenching coefficients, total chlorophyll content and concentration of anthocyanins were determined weekly during the juvenile, adult, reproductive and senescent phases of plant ontogenesis. This enabled quantification of the protective effectiveness of non‐photochemical fluorescence quenching (NPQ) and determination of light tolerance. The light intensity that caused photoinhibition in 50% of leaf population increased from ∼70 μmol m−2 s−1, for 1‐week‐old seedlings, to a maximum of 1385 μmol m−2 s−1for 8‐week‐old plants. After 8 weeks, the tolerated light intensity started to gradually decline, becoming only 332 μmol m−2 s−1for 13‐week‐old plants. The dependency of light tolerance on plant age was well‐related to the amplitude of protectiveNPQ(pNPQ) and the electron transport rates (ETRs). Light tolerance did not, however, show a similar trend to chlorophylla/bratios and content of anthocyanins. Our data suggest that pNPQis crucial in defining the capability of high light tolerance byArabidopsisplants during ontogenesis.

Từ khóa


Tài liệu tham khảo

10.1007/1-4020-3579-9_5

10.1126/science.1154800

10.1111/j.1365-313X.2010.04148.x

10.1038/174394a0

Aro E.‐M., 1993, Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances, Plant Physiology, 130, 835, 10.1104/pp.103.3.835

10.1002/j.1537-2197.1933.tb08913.x

10.1016/S0176-1617(96)80075-7

10.1007/s004250100556

10.1146/annurev.arplant.59.032607.092759

10.1074/jbc.M606417200

10.1016/S0959-440X(02)00357-3

10.1111/j.1365-3040.1997.00078.x

10.1111/j.1432-1033.1992.tb16640.x

Bassi R., 1987, Chlorophyll‐proteins of the photosystem II antenna system, The Journal of Biological Chemistry, 262, 13333, 10.1016/S0021-9258(18)45205-2

10.1038/nature03286

10.1074/jbc.M808625200

Biswal U., 1976, Aging induced changes in photosynthetic electron transport of detached barley leaves, Plant & Cell Physiology, 17, 323

10.1073/pnas.92.1.175

10.1023/A:1006980806057

10.1104/pp.126.3.1024

10.1105/tpc.13.7.1499

10.1016/0005-2728(79)90193-2

Cakmak I., 1991, Effect of aluminum on lipid peroxidation, superoxide‐dismutase, catalase and peroxidase activities in root‐tips of soybean (Glycine max), Physiologia Plantarum, 83, 463, 10.1111/j.1399-3054.1991.tb00121.x

10.1146/annurev.pp.19.060168.000245

10.1071/BT02008

10.1111/j.1365-3040.1991.tb01519.x

10.1007/BF02878234

10.1146/annurev.pp.43.060192.003123

Dodd I.C., 1998, Photoinhibition in differently coloured juvenile leaves of Syzygium species, Journal of Experimental Botany, 49, 1437, 10.1093/jxb/49.325.1437

10.1104/pp.115.4.1609

10.1104/pp.110.166181

10.1021/bi00035a019

10.1126/science.266.5185.605

10.1093/pcp/pcn170

10.1038/186136a0

10.1105/tpc.112.097972

10.1093/jxb/15.1.125

10.1007/BF00029812

10.1146/annurev.arplant.47.1.655

10.1146/annurev.arplant.57.032905.105212

10.1007/s11120-012-9769-y

10.1016/j.bbabio.2011.04.012

10.1074/jbc.M111.237255

10.1146/annurev.cellbio.14.1.373

10.1016/j.bbabio.2012.12.003

10.1016/0005-2728(74)90013-9

10.1007/BF00191564

10.1023/A:1007031818695

10.1038/35000131

10.1073/pnas.232447699

10.1007/s10725-008-9353-9

10.1023/A:1022614722629

10.1007/BF00201944

10.1073/pnas.0403857102

10.1093/jxb/10.2.233

10.1007/s004250100646

10.1016/0005-2728(69)90067-X

10.1126/science.1069596

10.1007/s11120-013-9906-2

10.1104/pp.118.1.27

10.1016/j.bbabio.2010.01.001

10.1111/j.1399-3054.2011.01457.x

10.1093/jxb/eri056

10.1016/B978-0-12-520920-5.50007-9

Oquist G., 1982, Photosynthetic efficiency during ontogenesis of leaves of Betula pendula, Plant, Cell and Environment, 5, 17, 10.1111/1365-3040.ep11587561

10.1023/A:1005936823310

10.1093/jexbot/52.360.1383

Peter G., 1991, Biochemical composition and organization of higher plant photosystem II light‐harvesting pigment‐proteins, Journal of Biological Chemistry, 266, 16745, 10.1016/S0021-9258(18)55364-3

10.1016/S0005-2728(89)80347-0

10.1007/s11099-006-0071-0

10.1007/s11099-008-0081-1

10.1111/j.1095-8339.1984.tb01566.x

10.1093/jxb/eru400

10.1098/rstb.2013.0222

10.1016/j.bbabio.2012.03.026

10.1074/jbc.274.15.10458

10.1038/nature06262

10.1016/j.bbabio.2011.04.007

10.1007/978-94-007-5724-0_23

10.1111/j.1365-3040.2005.01490.x

Siffel P., 1993, Age dependence of photosynthetic activity, chlorophyll fluorescence parameters and chloroplast ultrastructure in aurea and green forms of Nicotiana tabacum Su/su mutant, Photosynthetica, 29, 81

10.1007/BF02932934

10.1016/j.tplants.2010.10.001

10.1016/S0176-1617(97)80254-4

10.1046/j.1365-313X.1997.11061187.x

10.1007/978-94-009-5530-1_2

Tsukaya H., 2013, Leaf development, The Arabidopsis Book/American Society of Plant Biologists, 11, e0163

10.1038/nature09913

10.1007/s11120-013-9824-3

10.1016/S0981-9428(98)80090-9

10.1055/s-2004-817828

10.1093/jxb/eru477

10.1021/jp401663w

10.1105/TPC.010061

10.1111/j.1432-1033.1970.tb01169.x

10.1111/j.1399-3054.2009.01316.x

10.1007/s00425-014-2120-4

10.1111/j.1365-3040.2005.01459.x