Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series

Chaos - Tập 5 Số 1 - Trang 82-87 - 1995
Chung‐Kang Peng1,2, Shlomo Havlin3, H. Eugene Stanley4, Ary L. Goldberger1
1Cardiovascular Division, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215
2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
3Department of Physics, Bar Ilan University, Ramat Gan, Israel
4Center for Polymer Studies and Department of Physics, Boston, Massachusetts 02215

Tóm tắt

The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state [Physiol. Rev. 9, 399–431 (1929)]. However, recent studies [Phys. Rev. Lett. 70, 1343–1346 (1993); Fractals in Biology and Medicine (Birkhauser-Verlag, Basel, 1994), pp. 55–65] reveal that under normal conditions, beat-to-beat fluctuations in heart rate display the kind of long-range correlations typically exhibited by dynamical systems far from equilibrium [Phys. Rev. Lett. 59, 381–384 (1987)]. In contrast, heart rate time series from patients with severe congestive heart failure show a breakdown of this long-range correlation behavior. We describe a new method—detrended fluctuation analysis (DFA)—for quantifying this correlation property in non-stationary physiological time series. Application of this technique shows evidence for a crossover phenomenon associated with a change in short and long-range scaling exponents. This method may be of use in distinguishing healthy from pathologic data sets based on differences in these scaling properties.

Từ khóa


Tài liệu tham khảo

1990, Sci. Am., 262, 42

1993, Phys. Rev. Lett., 70, 1343, 10.1103/PhysRevLett.70.1343

1987, Phys. Rev. Lett., 59, 381, 10.1103/PhysRevLett.59.381

1971, Circ. Res., 29, 437, 10.1161/01.RES.29.5.437

1994, Phys. Rev. E, 49, 1691

1993, Biophys. J., 65, 2675

1994, Biophys. J., 67, 64, 10.1016/S0006-3495(94)80455-2

1995, J. Appl. Physiol., 78, 349, 10.1152/jappl.1995.78.1.349

1988, Phys. Rev. Lett., 61, 1438, 10.1103/PhysRevLett.61.1438

1978, Comments Astrophys., 7, 103

1992, Nature, 356, 168, 10.1038/356168a0

1986, J. Am. Coll. Cardiol., 7, 661, 10.1016/S0735-1097(86)80478-8

1988, Experientia, 44, 983, 10.1007/BF01939894

1987, Yale J. Biol. Med., 60, 421

1982, IEEE Trans. Biomed. Eng., BE-29, 456

1929, Physiol. Rev., 9, 399, 10.1152/physrev.1929.9.3.399

1993, Phys. Rev. E, 47, 3730, 10.1103/PhysRevE.47.3730