Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định lượng khí thải axit formic và axit acetic từ các bộ sưu tập di sản trong điều kiện môi trường phòng. Phần I: đo đạc tại phòng thí nghiệm và thực địa
Tóm tắt
Tốc độ phát thải riêng theo khu vực của axit formic và axit acetic từ các vật phẩm di sản được làm từ gỗ và giấy đã được định lượng trong điều kiện phòng bình thường (23 °C, 50% độ ẩm tương đối) cũng như trong điều kiện lạnh hơn (10 °C) và khô hơn (20% độ ẩm tương đối). Ở điều kiện phòng bình thường, tốc độ phát thải của axit formic và axit acetic cùng nhau nằm trong khoảng từ 10 đến 300 µg m−2 h−1. Tốc độ phát thải giảm từ 2 đến 4 lần khi nhiệt độ giảm từ 23 xuống 10 °C. Tốc độ phát thải giảm hơn 2 lần khi giảm độ ẩm tương đối từ 50% xuống 20%. Điều này hoàn toàn phù hợp với các phép đo thực địa trong các phòng lưu trữ thực tế chứa các bộ sưu tập di sản. Ngoài ra, 36 hợp chất hữu cơ bay hơi (VOCs) đã được xác định được phát thải từ bốn mẫu giấy. Tất cả các VOCs được phát hiện đều có thể có nguồn gốc từ nhiều nguồn khác nhau. Do đó, các chất này không thể được sử dụng làm dấu hiệu suy thoái độc nhất cho giấy mà thay vào đó là một chỉ dẫn về các nguồn phát thải có mặt trong môi trường trong nhà.
Từ khóa
#axit formic #axit acetic #phát thải #di sản #điều kiện trong nhà #hợp chất hữu cơ bay hơi (VOCs)Tài liệu tham khảo
Gibson LT, Ewlad-Ahmed A, Knight B, Horie V, Mitchell G, Robertson CJ. Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay? Chem Cent J. 2012;6:42–42.
Risholm-Sundman M, Lundgren M, Vestin E, Herder P. Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Eur J Wood Wood Prod. 1998;56:125–9.
Ramalho O, Dupont A-L, Egasse C, Lattuati-Derieux A. Emission rates of volatile organic compounds from paper. ePRESERVATIONScience. 2009;6:53–9.
Fengel D, Wegener G. Wood. Berlin: Walter de Gruyter; 1989.
Dupont A-L, Egasse C, Morin A, Vasseur F. Comprehensive characterisation of cellulose-and lignocellulose-degradation products in aged papers: capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives. Carbohyd Polym. 2007;68:1–16.
Clark AJ, Calvillo JL, Roosa MS, Green DB, Ganske JA. Degradation product emission from historic and modern books by headspace SPME/GC-MS: evaluation of lipid oxidation and cellulose hydrolysis. Anal Bioanal Chem. 2011;399:3589–600.
Lattuati-Derieux A, Bonnassies-Termes S, Lavédrine B. Identification of volatile organic compounds emitted by a naturally aged book using solid-phase microextraction/gas chromatography/mass spectrometry. J Chromatogr A. 2004;1026:9–18.
Grzywacz CM, Tennent NH. Pollution monitoring in storage and display cabinets: carbonyl pollutant levels in relation to artifact deterioration. Stud Conserv. 1994;39:164–70.
Chiavari C, Martini C, Prandstraller D, Niklasson A, Johansson L-G, Svensson J-E, Åslund A, Bergsten CJ. Atmospheric corrosion of historical organ pipes: the influence of environment and materials. Corros Sci. 2008;50:2444–55.
Halsberghe L, Erhardt D, Gibson LT, Zehnder K. Simple methods for the identification of acetate salts on museum objects. In ICOM-CC 14th Triennial Conference Preprints, Hague, 12–16 September 2005; 2. pp. 39–647.
Robinet L, Coupry C, Eremin K, Hall C. The use of Raman spectrometry to predict the stability of historic glasses. J Raman Spectrosc. 2006;37:789–97.
Gibson L, Watt C. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci. 2010;52:172–8.
Thickett D, Odlyha M. Note on the identification of an unusual pale blue corrosion product from Egyptian copper alloy artifacts. Stud Conserv. 2000;45:63–7.
Tétreault J, Cano E, Van Bommel M, Scott D, Dennis M, Barthés-Labrousse M-G, Minel L, Robbiola L. Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours. Stud Conserv. 2003;48:237–50.
Robinet L, Eremin K, Cobo Del Arco B, Gibson LT. A Raman spectroscopic study of pollution-induced glass deterioration. J Raman Spectrosc. 2004;35:662–70.
European Standard EN 16516. Construction products: assessment of release of dangerous substances—determination of emissions into indoor air. Berlin: Beuth Verlag; 2017.
International Standard ISO 554. Standard atmospheres for conditioning and/or testing. Specifications. Berlin: Beuth Verlag; 1976.
VDI-Richtlinie 4301 Blatt 7. Messen von Innenraumluftverunreinigungen—Messen von Carbonsäuren. Berlin: Beuth Verlag; 2018.
Schieweck A, Gunschera J, Varol D, Salthammer T. Analytical procedure for the determination of very volatile organic compounds (C3-C6) in indoor air. Anal Bioanal Chem. 2018;410:3171–83.
Salthammer T. Environmental test chambers and cells. In: Salthammer T, Uhde E (Ed.), Organic indoor air pollutants. WILEY-VCH, Weinheim, 2nd completely revised edition; 2009. pp. 101–115.
McLafferty FW, Turecek F. Interpretation of mass spectra. Mill Valley: University Science Books; 1993.
Hübschmann H-J. Handbook of GC-MS. 3rd ed. Weinheim: Wiley-VCH; 2015.
Massold E, Bähr C, Salthammer T, Brown SK. Determination of VOC and TVOC in air using thermal desorption GC-MS—practical implications for test chamber experiments. Chromatographia. 2005;62:75–85.
International standard ISO 16000-6:2011. Indoor air—part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FIDpart. 2011. pp. 1–10.
Ferm M, Karlsson A, Galle B. A multi-component diffusive sampler for acidic gases. Diffusive monitoring. 2002; 13.
Krupinska B, Van Grieken R, De Wael K. Air quality monitoring in a museum for preventive conservation: results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchem J. 2013;110:350–60.
Sparks LE, Tichenor BA, Chang J, Guo Z. Gas-phase mass transfer model for predicting volatile organic compound (VOC) emission rates from indoor pollutant sources. Indoor Air. 1996;6:31–40.
Smedemark SH, Ryhl-Svendsen M. The contribution of formic and acetic acid from paper to indoor air pollution in archives and its dependence on temperature. Journal of Paper Conservation. Submitted 2019.
Schieweck A, Salthammer T. Schadstoffe in Museen. Stuttgart: Bibliotheken und Archiven. Fraunhofer IRB Verlag; 2014.
Tétreault J. Airborne pollutants in museums, galleries, and archives: risk assessment, control strategies, and preservation management. Canada: Canadian Conservation Institute; 2003.
Wolkoff P. Impact of air velocity, temperature, humidity, and air on long-term VOC emissions from building products. Atmos Environ. 1998;32:2659–68.
Qifan W, Jun S, Yang Z, Wanjun L. Influence of environmental factors on volatile organic compound emissions from plywood tested by a rapid detection method. Forest Prod J. 2017;67:120–5.
Wal JF, Hoogeveen AW, Wouda P. The influence of temperature on the emission of volatile organic compounds from pvc flooring, carpet, and paint. Indoor Air. 1997;7:215–21.
Myers GE. Effect on ventilation rate and board loading on formaldehyde concentration: a critical review of the literature. Forest Prod J. 1984;34(10):59–68.
Steckel V, Knoepfle A, Ohlmeyer M. Effects of climatic test parameters on acetic acid emission from beech (Fagus sylvatica L.). Holzforschung. 2013;67:47–51.
Lattuati-Derieux A, Bonnassies-Termes S, Lavédrine B. Characterisation of compounds emitted during natural and artificial ageing of a book. Use of headspace-solid-phase microextraction/gas chromatography/mass spectrometry. J Cult Herit. 2006;7:123–33.
Lattuati-Derieux A, Ramalho O, Egasse C, Thao-Heu S, Dupont A-L. Evaluation of solid-phase microextraction on fiber derivatization for the analysis of paper degradation compounds. ePRESERVATIONScience. 2015;12:38–49.
Hrivňák J, Tölgyessy P, Figedyová S, Katuščák S. Solid-phase microcolumn extraction and gas chromatography–mass spectrometry identification of volatile organic compounds emitted by paper. Talanta. 2009;80:400–2.
Strlič M, Thomas J, Trafela T, Csefalvayova L, Cigic IK, Kolar J, Cassar M. Material degradomics: on the smell of old books. Anal Chem. 2009;81:8617–22.
Gaspar EM, Santana JC, Lopes JF, Diniz MB. Volatile organic compounds in paper—an approach for identification of markers in aged books. Anal Bioanal Chem. 2010;397:369–80.
Strlič M, Cigić IK, Možir A, De Bruin G, Kolar J, Cassar M. The effect of volatile organic compounds and hypoxia on paper degradation. Polym Degrad Stab. 2011;96:608–15.
Bembibre C, Strlič M. Smell of heritage: a framework for the identification, analysis and archival of historic odours. Herit Sci. 2017;5:1–11.
Pedersoli JL, Ligterink FJ, Van Bommel M. Non-destructive determination of acetic acid and furfural in books by Solid-Phase Micro-extraction (SPME) and Gas Chromatography-Mass Spectrometry (GC/MS). Restaurator. 2011;32:110–34.
Shahani CJ, Harrison G. Spontaneous formation of acids in the natural aging of paper. Stud Conserv. 2002;47:189–92.
Schieweck A, Salthammer T. Emission from construction and decoration materials for museum showcases. Stud Conserv. 2009;54:218–35.
Schieweck A, Salthammer T. Indoor air quality in passive-type museum showcases. J Cult Hert. 2011;12:205–13.
He Z, Zhang Y, Wei W. Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Build Environ. 2011;47:197–204.
Smedemark S.H, Ryhl-Svendsen M. Quantification of formic acid and acetic acid emissions from heritage collections under indoor room conditions—part II a model study. To be submitted 2020.