Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray ionization mass spectrometry and high performance liquid chromatography

Central European Journal of Chemistry - Tập 8 - Trang 530-535 - 2010
Dumitru Condrat1, Cristina Mosoarca2, Alina D. Zamfir1,2, Florin Crişan3, Maria R. Szabo1, Alfa X. Lupea4
1Department of Chemical and Biological Sciences, Aurel Vlaicu University, Arad, Romania
2National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
3County Lab for Pesticides Quality Control, Arad, Romania
4Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University, Timişoara, Romania

Tóm tắt

This study presents the results obtained from qualitative and quantitative analysis of gallic acid from hydro-alcoholic extracts (methanol, ethanol) of plants from Plantae regnum. Plant qualitative analysis was performed using a novel mass spectrometric (MS) method based on fully automated chip-nanoelectrospray ionization (nanoESI) high capacity ion trap (HCT) while quantitative analysis was carried out by high performance liquid chromatography (HPLC). These methods were applied to Alchemilla vulgaris — common lady’s-mantle (aerial part), Allium ursinum — bear’s garlic (leaves), Acorus calamus — common sweet flag (roots), Solidago virga-aurea — goldenrod (aerial part). Obtained results indicated that methanol extracts (96%, 80%) have a gallic acid content ranging between 0.0011–0.0576 mg mL−1 extract while the ethanol extracts (96%, 60%) exhibit a gallic acid concentration that varies between 0.0010–0.0182 mg mL−1 extract.

Tài liệu tham khảo

P. Buzzini et al., Mini Rev. Med. Chem. 8, 1179, (2008) J. Zhang, L. Li, S.H. Kim, A.E. Hagerman, J. Lü, Pharm. Res. 26, 2066, (2009) S.Z. Choi, S.U. Choi, S.Y. Bae, S. Pyo, K.R. Lee, Arch. Pharm. Res. 28, 49, (2005) H. Kim, T.H. Han, S.G. Lee, J. Ethnopharmacol. 122, 149, (2009) S. Moco, B. Schneider, J. Vervoort, J. Proteome Res. 8, 1694, (2009) N. Nakatani, J. Food Sci. 3447 (2002) N. Morita, M. Arisawa, Heterocycles 4, 373 (1976) A.D. Zamfir, J. Chromatogr. A 2, 1159, (2007) B. Suarez, J. Agric. Food. Chem. 42, 2732, (1994) J. Daigle, E.J. Conkerton, J. Chromatogr. 24, 262 (1982) P. Mämmelä, H. Savolainen, L. Lindroos, J. Kangas, T. Vartiainen, J. Chromatogr. A 891, 75, (2000) H.D. Graham, Food Chemistry 40, 801 (1992) A.E. Hagerman, M.E. Rice, N.T. Richard, J. Agric. Food. Chem., 46, 2590 (1998) R. Almeida et al., Anal. Biochem. 378, 43 (2008) T. Visnapuu, A.D. Zamfir, C. Mosoarca, M.D. Stanescu, T. Alamäe, Rapid Commun. Mass Spectrom. 23, 1337, (2009) A.D. Zamfir et al., Proteomics 9, 3435, (2009) A. Serb, C. Schiopu, C. Flangea, E. Sisu, A.D. Zamfir. J. Mass Spectrom. 44, 1434, (2009)