QDNN: deep neural networks with quantum layers
Tóm tắt
In this paper, a quantum extension of classical deep neural network (DNN) is introduced, which is called QDNN and consists of quantum structured layers. It is proved that the QDNN can uniformly approximate any continuous function and has more representation power than the classical DNN. Moreover, the QDNN still keeps the advantages of the classical DNN such as the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Furthermore, the QDNN uses parameterized quantum circuits (PQCs) as the basic building blocks and hence can be used on near-term noisy intermediate-scale quantum (NISQ) processors. A numerical experiment for an image classification task based on QDNN is given, where a high accuracy rate is achieved.
Tài liệu tham khảo
Aaronson S, Kuperberg G, Granade C (2005) The complexity zoo
Aaronson S (2015) Read the fine print. Nat Phys 11(4):291–293
Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum boltzmann machine. Phys Rev X 8(2):021,050
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574:505–510
Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D, Wolf R (2020) Training deep quantum neural networks. Nat Commun 11(1):1–6
Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4(4):043,001
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202
Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum neuron: an elementary building block for machine learning on quantum computers. arXiv:1711.11240
Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2020) Cost-function-dependent barren plateaus in shallow quantum neural networks. arXiv:2001.00550
Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15 (12):1273–1278
Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314
Dallaire-Demers PL, Killoran N (2018) Quantum generative adversarial networks. Physical Rev A 98(1):012,324
Daniely A (2017) Depth separation for neural networks. In: Kale S, Shamir O (ed) Proceedings of the 2017 conference on learning theory, proceedings of machine learning research, vol 65. PMLR, Amsterdam, pp 690–696. http://proceedings.mlr.press/v65/daniely17a.html
Eldan R, Shamir O (2016) The power of depth for feedforward neural networks. In: Feldman V, Rakhlin A, Shamir O (eds) 29th Annual conference on learning theory, proceedings of machine learning research, vol 49. pp 907–940. PMLR, Columbia University, New York, New York, USA. http://proceedings.mlr.press/v49/eldan16.html
Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv:1802.06002
Gao X, Zhang Z, Duan L (2018) A quantum machine learning algorithm based on generative models, vol 4
Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160,501
Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green AG, Severini S (2018) Hierarchical quantum classifiers. npj Quantum Inf 4(1):1–8
Grant E, Wossnig L, Ostaszewski M, Benedetti M (2019) An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3:214
Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of 28th annual ACM symposium on theory of computing, STOC ’96. https://doi.org/10.1145/237814.237866. ACM, New York, pp 212–219
Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209
Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T, http://www.sciencedirect.com/science/article/pii/089360809190009T
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671):242–246
Kerenidis I, Landman J, Prakash A (2020) Quantum algorithms for deep convolutional neural networks. In: International conference on learning representations. https://openreview.net/forum?id=Hygab1rKDS
Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S (2019) Continuous-variable quantum neural networks. Phys Rev Res 1(3):033,063
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
Kratsios A (2019) The universal approximation property: characterizations, existence, and a canonical topology for deep-learning. arXiv:1910.03344
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867. https://doi.org/10.1016/S0893-6080(05)80131-5. http://www.sciencedirect.com/science/article/pii/S0893608005801315
Li Y, Zhou RG, Xu R, Luo J, Hu W (2020) A quantum deep convolutional neural network for image recognition. Quantum Sci Technol 5(4):044,003. https://doi.org/10.1088/2058-9565/ab9f93
Liu JG, Wang L (2018) Differentiable learning of quantum circuit born machines. Phys Rev A 98(6):062,324
Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum eigensolver with fewer qubits. Phys Rev Res 1(023):025. https://doi.org/10.1103/PhysRevResearch.1.023025
Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum eigensolver with fewer qubits. Phys Rev Res 1(023):025. https://doi.org/10.1103/PhysRevResearch.1.023025
Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631
Lloyd S, Weedbrook C (2018) Quantum generative adversarial learning. Phys Rev Lett 121 (4):040,502
Luo XZ, Liu JG, Zhang P, Wang L (2019) Yao.jl: Extensible, efficient framework for quantum algorithm design. arXiv:1912.10877
McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9(1):1–6
McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18(2):023,023
Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys Rev A 98(032):309. https://doi.org/10.1103/PhysRevA.98.032309
Nakanishi KM, Fujii K, Todo S (2019) Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv:1903.12166
Pinkus A (1999) Approximation theory of the mlp model in neural networks. Acta Numerica 8:143–195. https://doi.org/10.1017/S0962492900002919
Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79
Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130,503
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. Phys Rev A 99(3):032,331
Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101(3):032,308
Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 122(4):040,504
Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemp Phys 56(2):172–185
Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a perceptron on a quantum computer. Phys Lett A 379(7):660–663. https://doi.org/10.1016/j.physleta.2014.11.061, https://www.sciencedirect.com/science/article/pii/S037596011401278X
Shor PW (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. IEEE, pp 124–134
Situ H, He Z, Wang Y, Li L, Zheng S (2020) Quantum generative adversarial network for generating discrete distribution. Inf Sci
Socher R, Bengio Y, Manning CD (2012) Deep learning for nlp (without magic). In: Tutorial abstracts of ACL 2012. Association for Computational Linguistics, pp 5–5
Steinbrecher GR, Olson JP, Englund D, Carolan J (2019) Quantum optical neural networks. npj Quantum Inf 5(1):1–9
Stone MH (1948) The generalized weierstrass approximation theorem. Math Mag 21(4):167–184. http://www.jstor.org/stable/3029750
Tacchino F, Barkoutsos P, Macchiavello C, Tavernelli I, Gerace D, Bajoni D (2020) Quantum implementation of an artificial feed-forward neural network. Quantum Sci Technol 5(4):044,010. https://doi.org/10.1088/2058-9565/abb8e4
Vardi G, Shamir O (2020) Neural networks with small weights and depth-separation barriers. In: Advances in neural information processing systems, p 33
Volkoff T, Coles PJ (2021) Large gradients via correlation in random parameterized quantum circuits. Quantum Sci Technol 6(2):025,008
Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018
Wan KH, Dahlsten O, Kristjánsson H., Gardner R, Kim M (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3(1):1–8
Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050,505
Zhao C, Gao XS (2021) Analyzing the barren plateau phenomenon in training quantum neural network with the ZX-calculus. arXiv:1802.06002
Zhao J, Zhang YH, Shao CP, Wu YC, Guo GC, Guo GP (2019) Building quantum neural networks based on a swap test. Phys Rev A 100(012):334. https://doi.org/10.1103/PhysRevA.100.012334