QDNN: deep neural networks with quantum layers

Springer Science and Business Media LLC - Tập 3 - Trang 1-9 - 2021
Chen Zhao1,2, Xiao-Shan Gao1,2
1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

In this paper, a quantum extension of classical deep neural network (DNN) is introduced, which is called QDNN and consists of quantum structured layers. It is proved that the QDNN can uniformly approximate any continuous function and has more representation power than the classical DNN. Moreover, the QDNN still keeps the advantages of the classical DNN such as the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Furthermore, the QDNN uses parameterized quantum circuits (PQCs) as the basic building blocks and hence can be used on near-term noisy intermediate-scale quantum (NISQ) processors. A numerical experiment for an image classification task based on QDNN is given, where a high accuracy rate is achieved.

Tài liệu tham khảo

Aaronson S, Kuperberg G, Granade C (2005) The complexity zoo Aaronson S (2015) Read the fine print. Nat Phys 11(4):291–293 Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum boltzmann machine. Phys Rev X 8(2):021,050 Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574:505–510 Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D, Wolf R (2020) Training deep quantum neural networks. Nat Commun 11(1):1–6 Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4(4):043,001 Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202 Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum neuron: an elementary building block for machine learning on quantum computers. arXiv:1711.11240 Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2020) Cost-function-dependent barren plateaus in shallow quantum neural networks. arXiv:2001.00550 Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15 (12):1273–1278 Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314 Dallaire-Demers PL, Killoran N (2018) Quantum generative adversarial networks. Physical Rev A 98(1):012,324 Daniely A (2017) Depth separation for neural networks. In: Kale S, Shamir O (ed) Proceedings of the 2017 conference on learning theory, proceedings of machine learning research, vol 65. PMLR, Amsterdam, pp 690–696. http://proceedings.mlr.press/v65/daniely17a.html Eldan R, Shamir O (2016) The power of depth for feedforward neural networks. In: Feldman V, Rakhlin A, Shamir O (eds) 29th Annual conference on learning theory, proceedings of machine learning research, vol 49. pp 907–940. PMLR, Columbia University, New York, New York, USA. http://proceedings.mlr.press/v49/eldan16.html Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv:1802.06002 Gao X, Zhang Z, Duan L (2018) A quantum machine learning algorithm based on generative models, vol 4 Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160,501 Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green AG, Severini S (2018) Hierarchical quantum classifiers. npj Quantum Inf 4(1):1–8 Grant E, Wossnig L, Ostaszewski M, Benedetti M (2019) An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3:214 Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of 28th annual ACM symposium on theory of computing, STOC ’96. https://doi.org/10.1145/237814.237866. ACM, New York, pp 212–219 Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209 Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T, http://www.sciencedirect.com/science/article/pii/089360809190009T Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671):242–246 Kerenidis I, Landman J, Prakash A (2020) Quantum algorithms for deep convolutional neural networks. In: International conference on learning representations. https://openreview.net/forum?id=Hygab1rKDS Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S (2019) Continuous-variable quantum neural networks. Phys Rev Res 1(3):033,063 Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980 Kratsios A (2019) The universal approximation property: characterizations, existence, and a canonical topology for deep-learning. arXiv:1910.03344 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444 Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867. https://doi.org/10.1016/S0893-6080(05)80131-5. http://www.sciencedirect.com/science/article/pii/S0893608005801315 Li Y, Zhou RG, Xu R, Luo J, Hu W (2020) A quantum deep convolutional neural network for image recognition. Quantum Sci Technol 5(4):044,003. https://doi.org/10.1088/2058-9565/ab9f93 Liu JG, Wang L (2018) Differentiable learning of quantum circuit born machines. Phys Rev A 98(6):062,324 Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum eigensolver with fewer qubits. Phys Rev Res 1(023):025. https://doi.org/10.1103/PhysRevResearch.1.023025 Liu JG, Zhang YH, Wan Y, Wang L (2019) Variational quantum eigensolver with fewer qubits. Phys Rev Res 1(023):025. https://doi.org/10.1103/PhysRevResearch.1.023025 Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631 Lloyd S, Weedbrook C (2018) Quantum generative adversarial learning. Phys Rev Lett 121 (4):040,502 Luo XZ, Liu JG, Zhang P, Wang L (2019) Yao.jl: Extensible, efficient framework for quantum algorithm design. arXiv:1912.10877 McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9(1):1–6 McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18(2):023,023 Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys Rev A 98(032):309. https://doi.org/10.1103/PhysRevA.98.032309 Nakanishi KM, Fujii K, Todo S (2019) Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv:1903.12166 Pinkus A (1999) Approximation theory of the mlp model in neural networks. Acta Numerica 8:143–195. https://doi.org/10.1017/S0962492900002919 Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79 Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130,503 Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. Phys Rev A 99(3):032,331 Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101(3):032,308 Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 122(4):040,504 Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemp Phys 56(2):172–185 Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a perceptron on a quantum computer. Phys Lett A 379(7):660–663. https://doi.org/10.1016/j.physleta.2014.11.061, https://www.sciencedirect.com/science/article/pii/S037596011401278X Shor PW (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. IEEE, pp 124–134 Situ H, He Z, Wang Y, Li L, Zheng S (2020) Quantum generative adversarial network for generating discrete distribution. Inf Sci Socher R, Bengio Y, Manning CD (2012) Deep learning for nlp (without magic). In: Tutorial abstracts of ACL 2012. Association for Computational Linguistics, pp 5–5 Steinbrecher GR, Olson JP, Englund D, Carolan J (2019) Quantum optical neural networks. npj Quantum Inf 5(1):1–9 Stone MH (1948) The generalized weierstrass approximation theorem. Math Mag 21(4):167–184. http://www.jstor.org/stable/3029750 Tacchino F, Barkoutsos P, Macchiavello C, Tavernelli I, Gerace D, Bajoni D (2020) Quantum implementation of an artificial feed-forward neural network. Quantum Sci Technol 5(4):044,010. https://doi.org/10.1088/2058-9565/abb8e4 Vardi G, Shamir O (2020) Neural networks with small weights and depth-separation barriers. In: Advances in neural information processing systems, p 33 Volkoff T, Coles PJ (2021) Large gradients via correlation in random parameterized quantum circuits. Quantum Sci Technol 6(2):025,008 Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018 Wan KH, Dahlsten O, Kristjánsson H., Gardner R, Kim M (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3(1):1–8 Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050,505 Zhao C, Gao XS (2021) Analyzing the barren plateau phenomenon in training quantum neural network with the ZX-calculus. arXiv:1802.06002 Zhao J, Zhang YH, Shao CP, Wu YC, Guo GC, Guo GP (2019) Building quantum neural networks based on a swap test. Phys Rev A 100(012):334. https://doi.org/10.1103/PhysRevA.100.012334