Pyramidal Inversion

Wiley - Tập 9 Số 6 - Trang 400-414 - 1970
Arvi Rauk1, Leland C. Allen1, Kurt Mislow1
1Department of Chemistry, Princeton University, Princeton, N.J. 08 540 (USA)

Tóm tắt

AbstractPyramidal inversion is discussed from the point of view of recent theoretical and experimental investigations in an attempt to provide a unified description of this process. Quantum mechanical studies of pyramidal molecules indicate that the origin of the inversion barrier may be dependent on the degree of angular constraint. Effects due to the electronegativity of substituents on the inversion center, to the presence of adjacent lone pairs, and to inclusion of d‐type functions in the basis set are discussed. The utility and limitations of molecular orbital calculations, vibrational spectroscopy, microwave spectroscopy, direct kinetic measurements, and dynamic nuclear magnetic resonance (DNMR) spectroscopy as means for determining barriers to pyramidal inversion are discussed in context with a review of the highlights of experimental observations on the subject. Ambiguities that arise in the interpretation of barriers determined by DNMR are explored in detail. Factors that affect the magnitude of inversion barriers are discussed separately in four broad categories: steric effects; effects of conjugation (including (p–d)π conjugation) and hyperconjugation; effects of angular constraint; and effects of heteroatomic substitution. In the last category, critical reference is made to the question of electronegativity vs. lone pair‐lone pair repulsions, the problem of rotation vs. inversion, and the role of d orbitals.

Từ khóa


Tài liệu tham khảo

10.1103/PhysRev.41.313

10.1063/1.1730820

10.1063/1.1673621

10.1063/1.1671209

(b)R. E.Kari Ph. D. Thesis University of Toronto Toronto Canada (1969).

A.Rauk L. C.Allen andK.Mislow unpublished work.

Lehn J.‐M., Chem. Commun., 1969, 1327

For ammonia at its ground state equilibrium geometry the attractive term of the total energy is 9.798484 × 104kcal/mole while the sum of the repulsive terms is 6.269181 × 104kcal/mole. Upon attaining a planar geometry the attractive term increases by 164.41 kcal/mole and the sum of the repulsive terms increases by 169.48 kcl/mole. The difference in these changes 5.07 kcal/mole is the actual energy which is required to flatten the molecule.

10.1016/0009-2614(63)80026-3

Both the interelectronic and the internuclear repulsions are greater in the planar form overriding the much smaller variation in the opposite direction of the kinetic energy term.

Gillespie R. J., 1958, Progress in Stereochemistry, 2, 261

Walsh A. D., J. chem. Soc., 1953, 2260

10.1139/v68-205

10.1021/ja01863a040

d‐Type polarization functions were not included in the basis set.

10.1007/BF00529023

D. T.Clark International Symposium Quantum Aspects of Heteroatomic Compounds in Chemistry and Biochemistry Jerusalem (1969).

A.Rauk L. C.Allen andK.Mislow in preparation.

In the literature of this subject the magnitude of the inversion barrier is generally expressed by ΔG≠ ΔH≠ Ea orVi depending on the method of determination and the preference of the authors.

10.1007/BF00528292

10.1080/00268976700100971

10.1016/S0040-4020(01)82944-6

10.1021/ja01012a004

(e) reference [20].

10.1021/ja01041a043

Townes C. H., 1955, Microwave Spectroscopy, 62

10.1063/1.1701290

10.1016/0022-2852(67)90173-7

10.1063/1.1668177

10.1021/j150495a006

10.1021/ja01639a012

10.1021/ja00990a004

10.1063/1.1727489

Frost A. A., 1961, Kinetics and Mechanism

For a remarkable exception to this statement seeJautelatandRoberts[30] who found that for(3) R = CH3 logAand ΔS≠ ranged from 16.33 to 21.67 and from 14 e.u. to 38 e.u. respectively depending on solvent.

10.1021/ja01031a021

Emsley J. W., 1965, High Resolution Nuclear Magnetic Resonance Spectroscopy

10.1002/9780470147122.ch2

10.1016/B978-1-4832-3114-3.50008-8

J. D.Andose J.‐M.Lehn K.Mislow andJ.Wagner in press.

10.1021/ja00966a001

10.1021/ja01034a007

See for example references [39] [40] [41] and [42].

See for example references [39] [43] and [44].

10.1021/ja01052a024

Raban M., Tetrahedron Letters, 1969, 1295

Lehn J.‐M., Chem. Commun., 1968, 1298

10.1021/ja01017a064

Fletcher J. R., Chem. Commun., 1969, 706

10.1021/ja01041a044

Wolfe S., Chem. Commun., 1970, 96

See alsoA.Rauk Ph. D. Thesis Queen's University Kingston Ontario Canada (1968).

10.1139/v69-014

10.1021/ja01034a069

Bagdanskis N. I., 1965, Opt. Spectry. (USSR), 19, 128

Riddell F. G., Chem. Commun., 1968, 1403

Leyden D. E., Chem. Commun., 1969, 598

10.1021/ja00895a049

Gribble G. W., Tetrahedron Letters, 1970, 1075

The transition state is closer to planarity than one or both of the ground states. It is not planar however when the invertomers are diastereomers or when they are enantiomers in chiral media;i.e. planarity obtains only in automerization reactions or in the interconversion of enantiomers under achiral conditions.

10.1021/ja01552a048

10.1021/ja00978a032

10.1021/ja00992a062

10.1111/j.2164-0947.1969.tb02016.x

10.1021/ja01004a061

10.1021/ja01004a062

Lehn J.‐M., Chem. Commun., 1968, 148

Kostyanovskii R. G., Tetrahedron Letters, 1969, 4021

10.1002/ange.19680800515

10.1002/anie.196802241

Cremer S. E., Tetrahedron Letter, 1968, 5799

S. E.Cremer personal communication.

Montanari F., Chem. Commun., 1968, 1694

The geometry at the nitrogen in formamide is a very shallow pyramid with an inversion barrier of 1.06 kcal/mole [65].

10.1063/1.1700891

Shibaeva R. P., 1967, Dokl. Akad. Nauk USSR, 175, 586

10.1021/jo01257a071

10.1021/ja00713a028

10.1021/ja01020a019

10.1021/ja00708a077

10.1016/0022-2860(69)80031-1

10.1021/ja00978a033

10.1021/ja00713a029

10.1021/ja00967a051

10.1021/ja01025a027

10.1021/ja01007a043

10.1021/ja01016a052

Wudl F., Tetrahedron Letters, 1969, 2133

10.1016/0371-1951(58)80078-8

10.1021/ja01629a015

10.1016/0022-2860(69)80056-6

Vilkov L. V., Chem. Commun., 1969, 1176

10.1021/ic50078a021

Cox J. W., Chem. Commun., 1967, 123

R. D.BaechlerandK.Mislow unpublished results.

10.1021/jo01033a063

Griffith D. L., Chem. Commun., 1968, 1682

10.1021/ja50001a060

10.1021/ja01878a059

Maitland P., 1939, Ann. Rept. chem. Soc. London, 36, 239

10.1002/jlac.19395390105

Mole J. D. C., 1939, Chem. and Ind., 17, 582

10.1021/ja01025a002

10.1021/ja00952a053

(a)J. P.Heeschen Ph. D. Thesis University of Illinois Urbana Ill. (1959);

10.1111/j.1749-6632.1958.tb35431.x

10.1021/ja01070a017

10.1021/ja01070a018

10.1021/jo01269a057

Jacobus J., Chem. Commun., 1969, 400

10.1021/ja01021a027

10.1021/ja00997a061

10.1021/ja01041a042

Clark D. T., Chem. Commun., 1969, 850

Millie Ph., 1968, Internat. J. quant. Chem., 67

10.1038/2221123a0

10.1063/1.1701415

10.1021/j100860a009

10.1063/1.1696516

10.1063/1.1726340

10.1021/ja01007a042

10.1021/ja00970a064

10.1021/ja01022a069

Scartazzini R., Tetrahedron Letters, 1967, 2719

10.1021/ja01043a069

10.1021/cr60211a005

10.1021/ja01096a014

10.1002/hlca.19690520707

Allred E. L., Tetrahedron Letters, 1967, 525

Anderson J. E., Bull. Soc. chim. France, 1966, 2402

10.1021/ja00977a017

Kintzinger J. P., Chem. Commun., 1967, 206

10.1021/ja01017a065

Jones R. A. Y., Chem. Commun., 1969, 708

Brois S. J., Tetrahedron Letters, 1968, 5997

Atkinson R. S., Chem. Commun., 1968, 676

10.1002/ange.19690810606

10.1002/anie.196902121

10.1021/ja01578a043

Boyd D. R., Tetrahedron Letters, 1968, 4561

Boyd D. R., J. chem. Soc. (C), 1969, 2648

Boyd D. R., J. chem. Soc. (C), 1969, 2650

10.1002/jlac.19697270126

See Table 1 footnote (f) of reference [19 d].

By LCAO–MO–SCF (Hartree‐Fock) calculations using a fairly limited 5s2p Gaussian basis set for C and F;

10.1063/1.1668076

10.1063/1.1697199

Brauman S. K., J. chem. Soc. (B), 1969, 1091

Hargreaves M. K., Chem. Commun., 1969, 16

Bystrov V. F., 1965, Opt. Spectry. (USSR), 19, 122

Rautenstrauch V., Chem. Commun., 1969, 1122

10.1021/ja01051a032

10.1021/ja01013a058

10.1021/ja01036a094

Raban M., Chem. Commun., 1967, 1017

Raban M., Tetrahedron Letters, 1968, 5055

Goldwhite H., Chem. Commun., 1969, 713

Simonnin M. P., Bull. Soc. chim. France, 1967, 3544

10.1021/ic50078a006

10.1021/ja01047a007

10.1021/ic50081a001

10.1021/ja00965a048

10.1021/ja01087a020

10.1021/ja01016a053

10.1021/ja00947a042

10.1021/ja01012a063

10.1021/ja01470a016

Lauterbur P. C., J. chem. Soc., 1963, 5307

10.1016/S0040-4020(01)92512-8

Wieber M., 1968, Mh. Chem., 99, 1159

J. P.CaseyandK.Mislow unpublished results.

Campbell I. G. M., J. chem. Soc., 1956, 1976

White D. W., Tetrahedron Letters, 1968, 5369

Hargis J. H., Tetrahedron Letters, 1968, 5365

10.1021/ja00960a054

Green M., Chem. Commun., 1967, 57

Green M., J. chem. Soc. (A), 1968, 483

10.1021/ja00994a008

10.1021/ja00994a009

10.1016/S0022-328X(00)80244-2

Cram D. J., 1965, Fundamentals of Carbanion Chemistry, 71

10.1021/ja00891a015

10.1246/bcsj.39.2556

Horner L., Tetrahedron Letters, 1966, 3315

10.1021/ja01023a072

10.1021/ja01071a047

Bendazzoli G. L., J. chem. Soc. (A), 1968, 2186