Pyramidal Inversion
Tóm tắt
Từ khóa
Tài liệu tham khảo
(b)R. E.Kari Ph. D. Thesis University of Toronto Toronto Canada (1969).
A.Rauk L. C.Allen andK.Mislow unpublished work.
Lehn J.‐M., Chem. Commun., 1969, 1327
For ammonia at its ground state equilibrium geometry the attractive term of the total energy is 9.798484 × 104kcal/mole while the sum of the repulsive terms is 6.269181 × 104kcal/mole. Upon attaining a planar geometry the attractive term increases by 164.41 kcal/mole and the sum of the repulsive terms increases by 169.48 kcl/mole. The difference in these changes 5.07 kcal/mole is the actual energy which is required to flatten the molecule.
Both the interelectronic and the internuclear repulsions are greater in the planar form overriding the much smaller variation in the opposite direction of the kinetic energy term.
Gillespie R. J., 1958, Progress in Stereochemistry, 2, 261
Walsh A. D., J. chem. Soc., 1953, 2260
d‐Type polarization functions were not included in the basis set.
D. T.Clark International Symposium Quantum Aspects of Heteroatomic Compounds in Chemistry and Biochemistry Jerusalem (1969).
A.Rauk L. C.Allen andK.Mislow in preparation.
In the literature of this subject the magnitude of the inversion barrier is generally expressed by ΔG≠ ΔH≠ Ea orVi depending on the method of determination and the preference of the authors.
(e) reference [20].
Townes C. H., 1955, Microwave Spectroscopy, 62
Frost A. A., 1961, Kinetics and Mechanism
For a remarkable exception to this statement seeJautelatandRoberts[30] who found that for(3) R = CH3 logAand ΔS≠ ranged from 16.33 to 21.67 and from 14 e.u. to 38 e.u. respectively depending on solvent.
Emsley J. W., 1965, High Resolution Nuclear Magnetic Resonance Spectroscopy
J. D.Andose J.‐M.Lehn K.Mislow andJ.Wagner in press.
See for example references [39] [40] [41] and [42].
See for example references [39] [43] and [44].
Raban M., Tetrahedron Letters, 1969, 1295
Lehn J.‐M., Chem. Commun., 1968, 1298
Fletcher J. R., Chem. Commun., 1969, 706
Wolfe S., Chem. Commun., 1970, 96
See alsoA.Rauk Ph. D. Thesis Queen's University Kingston Ontario Canada (1968).
Bagdanskis N. I., 1965, Opt. Spectry. (USSR), 19, 128
Riddell F. G., Chem. Commun., 1968, 1403
Leyden D. E., Chem. Commun., 1969, 598
Gribble G. W., Tetrahedron Letters, 1970, 1075
The transition state is closer to planarity than one or both of the ground states. It is not planar however when the invertomers are diastereomers or when they are enantiomers in chiral media;i.e. planarity obtains only in automerization reactions or in the interconversion of enantiomers under achiral conditions.
Lehn J.‐M., Chem. Commun., 1968, 148
Kostyanovskii R. G., Tetrahedron Letters, 1969, 4021
Cremer S. E., Tetrahedron Letter, 1968, 5799
S. E.Cremer personal communication.
Montanari F., Chem. Commun., 1968, 1694
The geometry at the nitrogen in formamide is a very shallow pyramid with an inversion barrier of 1.06 kcal/mole [65].
Shibaeva R. P., 1967, Dokl. Akad. Nauk USSR, 175, 586
Wudl F., Tetrahedron Letters, 1969, 2133
Vilkov L. V., Chem. Commun., 1969, 1176
Cox J. W., Chem. Commun., 1967, 123
R. D.BaechlerandK.Mislow unpublished results.
Griffith D. L., Chem. Commun., 1968, 1682
Maitland P., 1939, Ann. Rept. chem. Soc. London, 36, 239
Mole J. D. C., 1939, Chem. and Ind., 17, 582
(a)J. P.Heeschen Ph. D. Thesis University of Illinois Urbana Ill. (1959);
Jacobus J., Chem. Commun., 1969, 400
Clark D. T., Chem. Commun., 1969, 850
Millie Ph., 1968, Internat. J. quant. Chem., 67
Scartazzini R., Tetrahedron Letters, 1967, 2719
Allred E. L., Tetrahedron Letters, 1967, 525
Anderson J. E., Bull. Soc. chim. France, 1966, 2402
Kintzinger J. P., Chem. Commun., 1967, 206
Jones R. A. Y., Chem. Commun., 1969, 708
Brois S. J., Tetrahedron Letters, 1968, 5997
Atkinson R. S., Chem. Commun., 1968, 676
Boyd D. R., Tetrahedron Letters, 1968, 4561
Boyd D. R., J. chem. Soc. (C), 1969, 2648
Boyd D. R., J. chem. Soc. (C), 1969, 2650
See Table 1 footnote (f) of reference [19 d].
By LCAO–MO–SCF (Hartree‐Fock) calculations using a fairly limited 5s2p Gaussian basis set for C and F;
Brauman S. K., J. chem. Soc. (B), 1969, 1091
Hargreaves M. K., Chem. Commun., 1969, 16
Bystrov V. F., 1965, Opt. Spectry. (USSR), 19, 122
Rautenstrauch V., Chem. Commun., 1969, 1122
Raban M., Chem. Commun., 1967, 1017
Raban M., Tetrahedron Letters, 1968, 5055
Goldwhite H., Chem. Commun., 1969, 713
Simonnin M. P., Bull. Soc. chim. France, 1967, 3544
Lauterbur P. C., J. chem. Soc., 1963, 5307
Wieber M., 1968, Mh. Chem., 99, 1159
J. P.CaseyandK.Mislow unpublished results.
Campbell I. G. M., J. chem. Soc., 1956, 1976
White D. W., Tetrahedron Letters, 1968, 5369
Hargis J. H., Tetrahedron Letters, 1968, 5365
Green M., Chem. Commun., 1967, 57
Green M., J. chem. Soc. (A), 1968, 483
Cram D. J., 1965, Fundamentals of Carbanion Chemistry, 71
Horner L., Tetrahedron Letters, 1966, 3315
Bendazzoli G. L., J. chem. Soc. (A), 1968, 2186