Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tinh chế và nghiên cứu docking phân tử của các peptide ức chế α-glucosidase từ protein đậu nành thuỷ phân với tiền xử lý bằng siêu âm
Tóm tắt
Protein đậu nành đã được thuỷ phân bằng trypsin với tiền xử lý siêu âm để thu được một loại protein đậu nành thuỷ phân. Loại này đã được tách riêng theo chuỗi bằng phương pháp siêu lọc, sắc ký trao đổi ion, sắc ký lọc gel và sắc ký lỏng hiệu năng cao đảo ngược. Một thành phần hoạt tính cao với trọng lượng phân tử dưới 5 kDa, thu được từ phương pháp siêu lọc, đã làm giảm đáng kể mức đường huyết lúc đói ở chuột. Hoạt tính ức chế α-glucosidase của phân đoạn C-III-2a tách ra bằng sắc ký lỏng hiệu năng cao đảo ngược là cao nhất, với nồng độ ức chế nửa (IC50) là 0.049 mg/mL. Chuỗi axit amin của hai tripeptide từ phân đoạn C-III-2a đã được xác định là Gly-Ser-Arg và Glu-Ala-Lys bằng phương pháp phổ khối tandem bẫy ion. Phân tích docking phân tử đã chỉ ra rằng sự ức chế α-glucosidase bởi các peptide có thể chủ yếu do sự hình thành năm liên kết hydro mạnh giữa Glu-Ala-Lys và His-674, Asp-518, Arg-600, Asp-616, và Asp-282 trong α-glucosidase, và bốn liên kết hydro giữa Gly-Ser-Arg và các acid amin Asp-282, Asp-518, và Asp-616. Các kết quả cho thấy rằng một peptide ức chế α-glucosidase có thể có hiệu quả hạ đường huyết khi được sử dụng như một thành phần trong thực phẩm chức năng mới.
Từ khóa
#đậu nành #protein thuỷ phân #peptide ức chế α-glucosidase #hy vọng hạ đường huyết #sắc ký lỏng hiệu năng caoTài liệu tham khảo
Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14(12):S7–S85
Aguiree F, Brown A, Cho NH et al (2013) IDF diabetes atlas, 6th edn. International Diabetes Federation, Madrid
Fang Y, Wang S, Wu J et al (2017) The kinetics and mechanism of α-glucosidase inhibition by F5-SP, a novel compound derived from sericin peptides. Food Funct 8(1):323–332
Nongonierma AB, O’Keeffe MB, FitzGerald RJ (2016) Milk protein hydrolysates and bioactive peptides. In: McSweeney P, O'Mahony J (eds) Advanced dairy chemistry. Springer, New York, pp 417–482
Wang FJ, Song HL, Wang XM et al (2012) Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli. Appl Biochem Biotechnol 166(3):612–619
Mojica L, de Mejia EG, Granados-Silvestre MA et al (2017) Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J Funct Foods 31:274–286
Yu ZP, Yin YG, Zhao WZ et al (2011) Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem 129(4):1376–1382
Zhang Y, Ren C, Lu G et al (2014) Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharmacol 70(3):687–695
Ishihara K, Oyaizu S, Fukuchi Y et al (2003) A soybean peptide isolate diet promotes postprandial carbohydrate oxidation and energy expenditure in type II diabetic mice. J Nutr 133(3):752–757
Wulan SN, Astuti M, Marsono Y et al (2012) Hypoglycemic effect determination of soybean, soybean protein fraction and tempe in diabetic rats. Jurnal Teknologi Pertanian 3(2):94–102
Tu Z-C, Li Z, Chen G et al (2009) Hypoglycemic effect of soluble soybean dietary fiber. Food Sci 30(17):294–296
Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54(2):171–179
Raj BM, Jonganurakkun N, Hong G et al (2008) α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 106(1):247–252
Kang MG, Yi SH, Lee JS (2013) Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1. Mycobiology 41(3):149–154
Mawson R, Gamage M, Terefe NS et al (2011) Ultrasound in enzyme activation and inactivation. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Food engineering series. Springer, New York, pp 369–404
Davulcu A, Eren HA, Avinc O et al (2014) Ultrasound assisted biobleaching of cotton. Cellulose 21(4):2973–2981
Wu Q, Zhang X, Jia J et al (2018) Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: thermodynamic parameters, physicochemical properties and bioactivities. Process Biochem 67:46–54
Jia J, Ma H, Zhao W et al (2010) The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem 119(1):336–342
Yuan XQ, Gu XH, Tang J (2008) Purification and characterisation of a hypoglycemic peptide from Momordica charantia L. Var abbreviata Ser. Food Chem 111(2):415–420
Pan SK, Wang SJ, Jing LL et al (2016) Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chem 211:423–430
Lee HJ, Lee HS, Choi JW et al (2011) Novel tripeptides with alpha-glucosidase inhibitory activity isolated from silk cocoon hydrolysate. J Agric Food Chem 59(21):11522–11525
Zhang Y, Ren C, Lu G et al (2014) Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats. Int Immunopharmacol 22(1):248–257
Sasaoka Y, Kishimura H, Adachi S et al (2017) Collagen peptides derived from the triple helical region of sturgeon collagen improve glucose tolerance in normal mice. J Food Biochem 42(2):e12478
Wu Q, Jia J, Yan H et al (2015) A novel angiotensin-capital I, Ukrainian converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study. Peptides 68:17–24
Yuan X, Gu X, Tang J (2008) Purification and characterisation of a hypoglycemic peptide from Momordica charantia L. Var. abbreviata Ser. Food Chem 111(2):415–420
Wu Q, Du J, Jia J et al (2016) Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: hydrolysis kinetic, purification and molecular docking study. Food Chem 199:140–149
Jia J, Wu Q, Yan H et al (2015) Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem 50(5):876–883
He R, Malomo SA, Alashi A et al (2013) Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. J Funct Foods 5(2):781–789
Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61
Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
Chen JW, Wang YM, Zhong QX et al (2012) Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 33(1):52–58
Lee SJ, Kim YS, Kim SE et al (2012) Purification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from an enzymatic hydrolysate of duck skin byproducts. J Agric Food Chem 60(40):10035–10040
Fang Y, Wang S, Wu J et al (2016) The kinetics and mechanism of α-glucosidase inhibition by F5-SP, a novel compound derived from sericin peptides. Food Funct 8(1):323
Rawendra RDS, Aisha, Chang CI et al (2013) A novel angiotensin converting enzyme inhibitory peptide derived from proteolytic digest of Chinese soft-shelled turtle egg white proteins. J Proteom 94(20):359–369
Li FJ, Liu PC, Fang YY et al (2016) α-Glucosidase inhibitory activity of fermented soybeans started with a bacterial strain. China Condiment 41(8):26–30
Chen XM, Jin J, Tang J et al (2011) Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus. Carbohydr Polym 83(2):749–754
Connolly A, O’Keeffe MB, Piggott CO et al (2015) Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers’ spent grain protein isolate. Food Chem 176:64–71
Pari L, Saravanan G (2002) Antidiabetic effect of Cogent db, a herbal drug in alloxan-induced diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 131(1):19–25
Pari L, Saravanan R (2004) Antidiabetic effect of diasulin, a herbal drug, on blood glucose, plasma insulin and hepatic enzymes of glucose metabolism in hyperglycaemic rats. Diabetes Obes Metab 6(4):286–292
Zhang Y, Wang N, Wang W et al (2016) Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Peptides 76:45–50
Xie F, Wang S, Zhang L et al (2018) Investigating inhibitory activity of novel synthetic sericin peptide on α-d-glucosidase: kinetics and interaction mechanism study using a docking simulation. J Sci Food Agric 98(4):1502–1510
Lee HJ, Lee HS, Choi JW et al (2011) Novel tripeptides with α-glucosidase inhibitory activity isolated from silk cocoon hydrolysate. J Agric Food Chem 59(21):11522–11525
Fan X, Wang S, Li Z et al (2017) Investigating inhibitory activity of novel synthetic sericin peptide on α-d-glucosidase: kinetics and interaction mechanism study using a docking simulation. J Sci Food Agric 98(4):1502–1510
Brindis F, Rodríguez R, Bye R et al (2011) (Z)-3-butylidenephthalide from Ligusticum porteri, an α-glucosidase inhibitor. J Nat Prod 74(3):314–320