Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields

Francesca De Vito1, Giovanna Ferrari2, Nikolaï Lebovka3, Nikolai V. Shynkaryk3, Eugène Vorobiev3
1Centro Regionale di Competenza Produzioni Agroalimentari, University of Salerno, Fisciano (Salerno), Italy
2Department of Chemical and Food Engineering, University of Salerno, Fisciano (Salerno), Italy
3Departement de Génie des Procédés Industriels, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, B.P. 20529-60205, Compiègne Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abram, F., Smelt, J. P. P. M., Bos, R., & Wouters, P. C. (2003). Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. Journal of Applied Microbiology, 94, 571–579.

Aronsson, K., Lindgren, M., Johansson, B. R., & Rönner, U. (2001). Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2, 41–54.

Barsotti, L., & Cheftel, J. C. (1998). Traitement des aliments par champs electriques pulses. Science des Aliments, 18, 584–601.

Canatella, P. J., Karr, J. F., Petros, J. A., & Prausnitz, M. R. (2001). Quantitative study of electroporation mediated uptake and cell viability. Biophysics Journal, 80, 755–764.

Chang, D. C. (1989) Cell poration and cell fusion using an oscillating electric field. Biophysics Journal, 56, 641–652.

Fincan, M., & Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 55, 223–230.

Fincan, M., DeVito, F., & Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64, 381–388.

Kotnik, T., Miklavcic, D., & Slivnik, T. (1998). Time course of transmembrane voltage induced by time-varying electric fields: A method for theoretical analysis and its application. Bioelectrochemistry and Bioenergetics, 45, 3–16.

Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44, 213–223.

Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346.

Lebovka, N. I., Praporscic, I., Ghnimi, S., & Vorobiev, E. (2005). Does electroporation occur during the ohmic heating of food. Journal of Food Science, 70(5), 308–311.

Lebovka, N. I., Praporscic, I., & Vorobiev, E. (2004). Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innovative Food Science & Emerging Technologies, 5(1), 9–16.

Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007) Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644.

Lin, T. A., & Pitt, R. E. (1986). Rheology of apple and potato tissue as affected by cell turgor pressure. Journal of Texture Studies, 17, 291–313.

Mañas, P., Barsotti, L., & Cheftel, J. C. (2000). Microbial inactivation by pulsed electric fields in a batch treatment chamber: Effects of some electrical parameters and food constituents. Innovative Food Science and Emerging Technologies, 2, 239–249.

Mañas, P., & Vercet, A. (2006). Effect of Pulsed Electric Fields on Enzymes and Food Constituents. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 131–153). New York, USA: Springer.

Martín-Belloso, O., Vega-Mercado, H., Qin, B. L., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. G. (1997). Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. Journal of Food Processing and Preservation, 21, 193–208.

Mastwijk, H. (2006). Pulsed power systems for application of pulsed electric fields in the food industry. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 223–239). New York, USA: Springer.

Pauly, H., & Schwan, H. P. (1959). Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Zeitschrift für Naturforschung, B14, 125–131.

Raso, J., Álvarez, I., Condón, S., & Sala-Trepat, F. J. (2000). Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science and Emerging Technologies, 1, 21–29.

Sahimi, M. (1998). Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Physics Reports, 306, 213–395.

Sampedro, F., Rivas, A., Rodrigo, D., Martínez, A., & Rodrigo, M. (2007). Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. Journal of Food Engineering, 80(3), 931–938.

Schwan, H. P. (1957) Electrical properties of tissue and cell suspensions. In J. H. Lawrence & A. Tobias (Eds.), Advances in biological and medical physics (pp. 147–209). New York, USA: Academic.

Stauffer, D., & Aharony, A. (1992). Introduction to percolation theory. London, Great Britain: Taylor & Francis.

Toepfl, S., Heinz, V., & Knorr, D. (2006). Applications of pulsed electric fields technology for the food industry. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 197–223). New York, USA: Springer.

Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing, 46(6), 537–546.

Topfl, S. (2006). Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing – Applications, process and equipment design and cost analysis. PhD thesis. Institut für Lebensmitteltechnologie und Lebensmittelchemie, Berlin, Germany.

Qin, B. L., Zhang, Q., Swanson, B. G., & Pedrow, P. D. (1994). Inactivation of microorganisms by different pulsed electric fields of different voltage waveforms. Institute of Electrical and Electronics Engineers Transaction on Industry Applications, 1(6), 1047–1057.

Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N. I., & Bazhal, M. I. (2005). Pulsed electric field assisted extraction of juice from food plants. In G. Barbosa-Canovas, M. S. Tapia & M. P. Cano (Eds.), Novel food processing technologies (pp. 105–130). New York, USA: CRC.

Vorobiev, E., & Lebovka, N. I. (2006). Extraction of intercellular components by pulsed electric fields. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 153–194). New York, USA: Springer.

Wang, W. C., & Sastry, S. K. (2002). Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technologies, 3, 371–377.

Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics, 41(1), 135–160.

Wouters, P. C., Dutreux, N., Smelt, J. P. P. M., & Lelieveld, H. L. M. (1999). Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Applied and Environmental Microbiology, 65, 5364–5371.

Wouters, P. C., & Smelt, J. P. P. M. (1997). Inactivation of microorganisms with pulsed electric fields: Potential for food preservation. Food Biotechnology, 11(3), 193–229.

Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology, Biochemistry and Pharmacology, 105, 175–256.