Các hấp dẫn kéo lại cho phương trình phản ứng–khuếch tán không tự động với độ trễ vô hạn trong $C_{\gamma,L^{r}(\Omega)}$ hoặc $C_{\gamma,W^{1,r}(\Omega)}$

Springer Science and Business Media LLC - Tập 2018 - Trang 1-29 - 2018
Yanping Ran1,2, Jing Li1
1College of Applied Science, Beijing University of Technology, Beijing, P.R. China
2School of Mathematics and Statistics, Tianshui Normal University, Tianshui, P.R. China

Tóm tắt

Trong bài báo này, chúng tôi thiết lập tính đúng đắn cho phương trình phản ứng–khuếch tán không tự động với độ trễ vô hạn trên một miền hữu hạn. Sự tồn tại của các hấp dẫn kéo lại cho quá trình trong $C_{\gamma,L^{r}(\Omega)}$ và $C_{\gamma,W^{1,r}(\Omega)}$ được chứng minh tương ứng. Đo lường Kuratowski không tách biệt được áp dụng để kiểm tra tính tách biệt tiệm cận.

Từ khóa


Tài liệu tham khảo

Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993) Murray, J.D.: Mathematical Biology. Springer, Berlin (1993) Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Am. Math. Soc., Providence (1988) Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Berlin (1993) Mallet-Paret, J., Sell, G.R.: The Poincaré–Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441–489 (1996) Shi, Q., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. 462, 1242–1253 (2018) Kloeden, P.E., Schmalfuß, B.: Non-autonomous systems, cocycle attractors and variable time-step discretization. Numer. Algorithms 14, 141–152 (1997) Caraballo, T., Real, J.: Attractors for 2D-Navier–Stokes models with delays. J. Differ. Equ. 205, 271–297 (2004) Caraballo, T., Marín-Rubio, P., Valero, J.: Attractors for differential equations with unbounded delays. J. Differ. Equ. 239, 311–342 (2007) Wang, Y.J., Kloeden, P.E.: Pullback attractors of a multi-valued process generated by parabolic differential equations with unbounded delays. Nonlinear Anal. 90, 86–95 (2013) Marín-Rubio, P., Real, J., Valero, J.: Pullback attractors for a two-dimensional Navier–Stokes model in an infinite delay case. Nonlinear Anal. TMA 74, 2012–2030 (2011) Marin-Rubio, P., Real, J.: Pullback attractors for 2D-Navier–Stokes equations with delay in continuous and sub-linear operators. Discrete Contin. Dyn. Syst. 26, 989–1006 (2010) Ozturk, O., Akin, E.: On nonoscillatory solutions of two dimensional nonlinear delay dynamical systems. Opusc. Math. 36, 651–669 (2016) Duong, M.H.: Comparison and maximum principles for a class of flux-limited diffusions with external force fields. Adv. Nonlinear Anal. 5, 167–176 (2016) Jung, C.Y., Park, E., Temam, R.: Boundary layer analysis of nonlinear reaction–diffusion equations in a smooth domain. Adv. Nonlinear Anal. 6, 277–300 (2017) Wang, Y.J., Kloeden, P.E.: The uniform attractor of a multi-valued process generated by reaction–diffusion delay equations on an unbounded domain. Discrete Contin. Dyn. Syst. 34, 4343–4370 (2014) Ran, Y., Shi, Q.: Pullback attractors for a non-autonomous damped wave equation with infinite delays in weighted space. Math. Methods Appl. Sci. (2018) (submitted). https://doi.org/10.1002/mma.4918 Zhong, C.K., Yang, M.H., Sun, C.Y.: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction–diffusion equations. J. Differ. Equ. 223, 367–399 (2006) Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lect. Notes Math., vol. 840. Springer, Berlin (1981) Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math, vol. 133, pp. 9–126. Teubner, Stuttgart (1993) Li, X., Ruan, S.: Attractors for non-autonomous parabolic problems with singular initial data. J. Differ. Equ. 251, 728–757 (2015) Ma, W.B., Lu, Z.y.: Delay Differential Equations—Introduction of Function Differential Equations. Chinese Science (2013)