PubChem chemical structure standardization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brown FK (1998) Chapter 35—chemoinformatics: what is it and how does it impact drug discovery. In: James AB (ed) Annual reports in medicinal chemistry, vol 33. Academic, New York, pp 375–384. https://doi.org/10.1016/S0065-7743(08)61100-8
Hann M, Green R (1999) Chemoinformatics—a new name for an old problem? Curr Opin Chem Biol 3(4):379–383. https://doi.org/10.1016/s1367-5931(99)80057-x
Gasteiger J (2006) Chemoinformatics: a new field with a long tradition. Anal Bioanal Chem 384(1):57–64. https://doi.org/10.1007/s00216-005-0065-y
Engel T (2006) Basic overview of chemoinformatics. J Chem Inf Model 46(6):2267–2277. https://doi.org/10.1021/ci600234z
Varnek A, Baskin II (2011) Chemoinformatics as a theoretical chemistry discipline. Mol Inform 30(1):20–32. https://doi.org/10.1002/minf.201000100
Vogt M, Bajorath J (2012) Chemoinformatics: a view of the field and current trends in method development. Bioorg Med Chem 20(18):5317–5323. https://doi.org/10.1016/j.bmc.2012.03.030
Brecher J (2008) Graphical representation standards for chemical structure diagrams. Pure Appl Chem 80(2):277–410. https://doi.org/10.1351/pac200880020277
Food and Drug Administration Substance Registration System Standard Operation Procedure Substance Definition Manual. https://www.fda.gov/downloads/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/ucm127743.pdf . Accessed 13 Aug 2016
Weininger D (1988) Smiles, a chemical language and information-system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005
Weininger D, Weininger A, Weininger JL (1989) Smiles. 2. Algorithm for generation of unique smiles notation. J Chem Inf Comput Sci 29(2):97–101. https://doi.org/10.1021/ci00062a008
McNaught A (2006) The IUPAC international chemical identifier: InChI—a new standard for molecular informatics. Chem Int 28:12–14
Heller SR, McNaught AD (2009) The IUPAC international chemical identifier. Chem Int 31:7–9
Stein SE, Heller SR, Tchekhovskoi DV, Pletnev IV IUPAC International Chemical Identifier (InChI), InChI version 1, software version 1.04 (2011), Technical Manual http://www.inchi-trust.org/fileadmin/user_upload/software/inchi-v1.04/InChI_TechMan.pdf . Accessed 13 Aug 2016
Ash S, Cline MA, Homer RW, Hurst T, Smith GB (1997) SYBYL line notation (SLN): a versatile language for chemical structure representation. J Chem Inf Comput Sci 37(1):71–79. https://doi.org/10.1021/ci960109j
Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD (2008) SYBYL line notation (SLN): a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model 48(12):2294–2307. https://doi.org/10.1021/ci7004687
Gakh AA, Burnett MN (2001) Modular chemical descriptor language (MCDL): composition, connectivity, and supplementary modules. J Chem Inf Comput Sci 41(6):1494–1499. https://doi.org/10.1021/ci000108y
Gakh AA, Burnett MN, Trepalin SV, Yarkov AV (2011) Modular chemical descriptor language (MCDL): stereochemical modules. J Cheminform 3:5. https://doi.org/10.1186/1758-2946-3-5
Panico R, Powell WH, Richter JC (1993) A guide to IUPAC nomenclature of organic compounds recommendations 1993. Blackwell Science, Oxford
Favre HA, Hellwich K-H, Moss GP, Powell WH, Traynham JG (1999) Corrections to a guide to IUPAC nomenclature of organic compounds (IUPAC recommendations 1993). Pure Appl Chem 71(7):1328–1330
Leigh GJ, Favre HA, Metanomski WV (1998) Principles of organic nomenclature. Blackwell Science, Oxford
Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, Laufer J (1992) Description of several chemical-structure file formats used by computer-programs developed at molecular design limited. J Chem Inf Comput Sci 32(3):244–255. https://doi.org/10.1021/ci00007a012
Accelrys CTFile Formats. http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php . Accessed 13 Aug 2016
TRIPOS Mol2 File Format. http://tripos.com/data/support/mol2.pdf
Warr WA (2011) Representation of chemical structures. Wiley Interdiscip Rev Comput Mol Sci 1(4):557–579. https://doi.org/10.1002/wcms.36
Urbaczek S, Kolodzik A, Fischer JR, Lippert T, Heuser S, Groth I, Schuz-Gasch T, Rarey M (2011) NAOMI: on the almost trivial task of reading molecules from different file formats. J Chem Inf Model 51(12):3199–3207. https://doi.org/10.1021/ci200324e
Akhondi SA, Kors JA, Muresan S (2012) Consistency of systematic chemical identifiers within and between small-molecule databases. J Cheminform 4:35. https://doi.org/10.1186/1758-2946-4-35
Meng EC, Lewis RA (1991) Determination of molecular topology and atomic hybridization states from heavy-atom coordinates. J Comput Chem 12(7):891–898. https://doi.org/10.1002/jcc.540120716
Baber JC, Hodgkin EE (1992) Automatic assignment of chemical connectivity to organic-molecules in the Cambridge structural database. J Chem Inf Comput Sci 32(5):401–406. https://doi.org/10.1021/ci00009a001
Hendlich M, Rippmann F, Barnickel G (1997) BALI: automatic assignment of bond and atom types for protein ligands in the Brookhaven Protein Databank. J Chem Inf Comput Sci 37(4):774–778. https://doi.org/10.1021/ci9603487
Urbaczek S, Kolodzik A, Groth I, Heuser S, Rarey M (2013) Reading PDB: perception of molecules from 3D atomic coordinates. J Chem Inf Model 53(1):76–87. https://doi.org/10.1021/ci300358c
Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27(11–12):1337–1345. https://doi.org/10.1002/qsar.200810084
Sayle RA (2010) So you think you understand tautomerism? J Comput Aided Mol Des 24(6–7):485–496. https://doi.org/10.1007/s10822-010-9329-5
Katritzky AR, Hall CD, El-Dien B, El-Gendy M, Draghici B (2010) Tautomerism in drug discovery. J Comput Aided Mol Des 24(6–7):475–484. https://doi.org/10.1007/s10822-010-9359-z
Ferrari E, Saladini M, Pignedoli F, Spagnolo F, Benassi R (2011) Solvent effect on keto-enol tautomerism in a new beta-diketone: a comparison between experimental data and different theoretical approaches. New J Chem 35(12):2840–2847. https://doi.org/10.1039/c1nj20576e
Balabin RM (2009) Tautomeric equilibrium and hydrogen shifts in tetrazole and triazoles: focal-point analysis and ab initio limit. J Chem Phys 131(15):8. https://doi.org/10.1063/1.3249968
Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Advances in heterocyclic chemistry. Academic, New York
Scior T, Bender A, Tresadern G, Medina-Franco JL, Martinez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52(4):867–881. https://doi.org/10.1021/ci200528d
Sitzmann M, Ihlenfeldt WD, Nicklaus MC (2010) Tautomerism in large databases. J Comput Aided Mol Des 24(6–7):521–551. https://doi.org/10.1007/s10822-010-9346-4
Pospisil P, Ballmer P, Scapozza L, Folkers G (2003) Tautomerism in computer-aided drug design. J Recept Signal Transduct Res 23(4):361–371. https://doi.org/10.1081/rrs-120026975
Oellien F, Cramer J, Beyer C, Ihlenfeldt WD, Selzer PM (2006) The impact of tautomer forms on pharmacophore-based virtual screening. J Chem Inf Model 46(6):2342–2354. https://doi.org/10.1021/ci060109b
Todorov NP, Monthoux PH, Alberts IL (2006) The influence of variations of ligand protonation and tautomerism on protein-ligand recognition and binding energy landscape. J Chem Inf Model 46(3):1134–1142. https://doi.org/10.1021/ci050071n
Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A (2009) The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J Chem Inf Model 49(12):2742–2748. https://doi.org/10.1021/ci900364w
Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48(5):941–948. https://doi.org/10.1021/ci7004498
Duarte HA, Carvalho S, Paniago EB, Simas AM (1999) Importance of tautomers in the chemical behavior of tetracyclines. J Pharm Sci 88(1):111–120. https://doi.org/10.1021/js980181r
Jang YH, Goddard WA, Noyes KT, Sowers LC, Hwang S, Chung DS (2002) First principles calculations of the tautomers and pK(a) values of 8-oxoguanine: implications for mutagenicity and repair. Chem Res Toxicol 15(8):1023–1035. https://doi.org/10.1021/tx010146r
Hastings J, Magka D, Batchelor C, Duan L, Stevens R, Ennis M, Steinbeck C (2012) Structure-based classification and ontology in chemistry. J Cheminform 4:8. https://doi.org/10.1186/1758-2946-4-8
Bobach C, Bohme T, Laube U, Puschel A, Weber L (2012) Automated compound classification using a chemical ontology. J Cheminform 4:40. https://doi.org/10.1186/1758-2946-4-40
Trepalin SV, Skorenko AV, Balakin KV, Nasonov AF, Lang SA, Ivashchenko AA, Savchuk NP (2003) Advanced exact structure searching in large databases of chemical compounds. J Chem Inf Comput Sci 43(3):852–860. https://doi.org/10.1021/ci025582d
Martin YC (2009) Let’s not forget tautomers. J Comput Aided Mol Des 23(10):693–704. https://doi.org/10.1007/s10822-009-9303-2
Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49(1):68–75. https://doi.org/10.1021/ci800340j
Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24(6–7):591–604. https://doi.org/10.1007/s10822-010-9349-1
Urbaczek S, Kolodzik A, Rarey M (2014) The valence state combination model: a generic framework for handling tautomers and protonation states. J Chem Inf Model 54(3):756–766. https://doi.org/10.1021/ci400724v
Gobbi A, Lee ML (2012) Handling of tautomerism and stereochemistry in compound registration. J Chem Inf Model 52(2):285–292. https://doi.org/10.1021/ci200330x
Warr WA (2010) Tautomerism in chemical information management systems. J Comput Aided Mol Des 24(6–7):497–520. https://doi.org/10.1007/s10822-010-9338-4
Lloyd D (1996) What is aromaticity? J Chem Inf Comput Sci 36(3):442–447. https://doi.org/10.1021/ci950158g
Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PV (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67(4):1333–1338. https://doi.org/10.1021/jo016255s
Randic M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103(9):3449–3605. https://doi.org/10.1021/cr9903656
Stanger A (2009) What is… aromaticity: a critique of the concept of aromaticity-can it really be defined? Chem Commun 15:1939–1947. https://doi.org/10.1039/b816811c
Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z Phys 70:204–286
Hückel E (1932) Quantentheoretische Beiträge zum Benzolproblem II. Quantentheorie der induzierten Polaritäten. Z Phys 72:310–337
Aromaticity Perception. https://docs.eyesopen.com/toolkits/cpp/oechemtk/aromaticity.html . Accessed 23 July 2018
Kekulé A (1865) Sur la constitution des substances aromatiques. Bull Soc Chim Paris 3:98–110
Herndon WC (1973) Enumeration of resonance structures. Tetrahedron 29(1):3–12. https://doi.org/10.1016/s0040-4020(01)99369-x
Randic M (1976) Enumeration of the Kekule structures in conjugated hydrocarbons. J Chem Soc Faraday Trans 72:232–243. https://doi.org/10.1039/F29767200232
Blazic BDJ, Trinajstic N (1982) Computer-aided enumeration and generation of the kekule structures in conjugated hydrocarbons. Comput Chem 6(3):121–132. https://doi.org/10.1016/0097-8485(82)80005-3
Gutman I, Cyvin SJ (1987) A new method for the enumeration of kekule structures. Chem Phys Lett 136(2):137–140. https://doi.org/10.1016/0009-2614(87)80431-1
Cai F, Shao HQ, Liu CG, Jiang YS (2005) An alternative strategy for count and storage of Kekule and longer range resonance valence bond structures. J Chem Inf Model 45(2):371–378. https://doi.org/10.1021/ci049770a
Rashid Z, Van Lenthe JH (2011) Generation of kekule valence structures and the corresponding valence bond wave function. J Comput Chem 32(4):696–708. https://doi.org/10.1002/jcc.21655
Kearsley SK (1993) A quick robust method for assigning a kekule structure. Comput Chem 17(1):1–10. https://doi.org/10.1016/0097-8485(93)80022-6
Hansen P, Zheng ML (1995) Assigning a kekule structure to a conjugated molecule. Comput Chem 19(1):21–26. https://doi.org/10.1016/0097-8485(94)00035-d
Blessington B (1995) A serious problem with computer-processing of stereochemistry in chemical-structure files—the need for standardization. Chirality 7(5):337–341. https://doi.org/10.1002/chir.530070505
Martin E, Monge A, Duret JA, Gualandi F, Peitsch MC, Pospisil P (2012) Building an R&D chemical registration system. J Cheminform 4:11. https://doi.org/10.1186/1758-2946-4-11
Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50(7):1189–1204. https://doi.org/10.1021/ci100176x
Clark RD, Waldman M (2012) Lions and tigers and bears, oh my! three barriers to progress in computer-aided molecular design. J Comput Aided Mol Des 26(1):29–34. https://doi.org/10.1007/s10822-011-9504-3
Egorova KS, Toukach PV (2012) Critical analysis of CCSD data quality. J Chem Inf Model 52(11):2812–2814. https://doi.org/10.1021/ci3002815
Oprea T, Olah M, Ostopovici L, Rad R, Mracec M (2003) On the propagation of errors in the QSAR literature. In: Ford M, Livingstone D, Dearden J, Waterbeemd H (eds) EuroQSAR 2002 designing drugs and crop protectants: processes, problems and solutions, 2003rd edn. Blackwell, New York, pp 314–315
Olah M, Mracec M, Ostopovici L, Rad R, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M, Oprea TI (2005) WOMBAT: world of molecular bioactivity. In: Chemoinformatics in drug discovery. Wiley-VCH Verlag GmbH & Co. KGaA, pp 221–239. https://doi.org/10.1002/3527603743.ch9
Tiikkainen P, Bellis L, Light Y, Franke L (2013) Estimating error rates in bioactivity databases. J Chem Inf Model 53(10):2499–2505. https://doi.org/10.1021/ci400099q
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han LY, He JE, He SQ, Shoemaker BA, Wang JY, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucl Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951
Kim S (2016) Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 11(9):843–855. https://doi.org/10.1080/17460441.2016.1216967
Wang YL, Bryant SH, Cheng TJ, Wang JY, Gindulyte A, Shoemaker BA, Thiessen PA, He SQ, Zhang J (2017) PubChem BioAssay: 2017 update. Nucl Acids Res 45(D1):D955–D963. https://doi.org/10.1093/nar/gkw1118
McEntyre J, Lipman D (2001) PubMed: bridging the information gap. Can Med Assoc J 164(9):1317–1319
PubMed. http://www.ncbi.nlm.nih.gov/pubmed
Bolton EE, Chen J, Kim S, Han LY, He SQ, Shi WY, Simonyan V, Sun Y, Thiessen PA, Wang JY, Yu B, Zhang J, Bryant SH (2011) PubChem3D: a new resource for scientists. J Cheminform 3:32. https://doi.org/10.1186/1758-2946-3-32
Bolton EE, Kim S, Bryant SH (2011) PubChem3D: conformer generation. J Cheminform 3:4. https://doi.org/10.1186/1758-2946-3-4
Kim S, Bolton EE, Bryant SH (2013) PubChem3D: conformer ensemble accuracy. J Cheminform 5:1. https://doi.org/10.1186/1758-2946-5-1
OpenEye OEChem C++ Toolkit, version 1.9.0; OpenEye Scientific Software Inc., Santa Fe, NM. http://www.eyesopen.com/oechem-tk
OpenEye Quacpac C++ Toolkit, version 1.9.0; OpenEye Scientific Software Inc., Santa Fe, NM. http://www.eyesopen.com/quacpac-tk
OpenEye OEDepict C++ Toolkit, version 1.9.0; OpenEye Scientific Software Inc., Santa Fe, NM. http://www.eyesopen.com/oedepict-tk
OpenEye Lexichem C++ Toolkit, version 1.9.0; OpenEye Scientific Software Inc., Santa Fe, NM
Warr WA (2011) Some trends in chem(o)informatics. In: Bajorath J (ed) Chemoinformatics and computational chemical biology, vol 672. Methods in molecular biology. Humana Press Inc., Totowa, pp 1–37. https://doi.org/10.1007/978-1-60761-839-3_1
Fanton M, Floris M, Cristiani A, Olla S, Medda R, Sabbadin D, Bulfone A, Moro S (2013) MMsDusty: an alternative InChI-based tool to minimize chemical redundancy. Mol Inform 32(8):681–684. https://doi.org/10.1002/minf.201300061
Rogers FB (1963) Medical subject heading. Bull Med Libr Assoc 51:114–116
Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729(1):3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001
Wiberg N (2007) Natürliche Nuklide. In: Lehrbuch der Anorganischen Chemie, 102. Auflage. De Gruyter, Berlin, p 2001
Ehrlich HC, Rarey M (2012) Systematic benchmark of substructure search in molecular graphs—From Ullmann to VF2. J Cheminform 4:13. https://doi.org/10.1186/1758-2946-4-13
O’Boyle NM (2012) Towards a universal SMILES representation—a standard method to generate canonical smiles based on the InChI. J Cheminform 4:22. https://doi.org/10.1186/1758-2946-4-22
Clark AM (2011) Accurate specification of molecular structures: the case for zero-order bonds and explicit hydrogen counting. J Chem Inf Model 51(12):3149–3157. https://doi.org/10.1021/ci200488k
Brecher J (2006) Graphical representation of stereochemical configuration—(IUPAC recommendations 2006). Pure Appl Chem 78(10):1897–1970. https://doi.org/10.1351/pac200678101897
Razinger M, Balasubramanian K, Perdih M, Munk ME (1993) Stereoisomer generation in computer-enhanced structure elucidation. J Chem Inf Comput Sci 33(6):812–825. https://doi.org/10.1021/ci00016a003
Perdih M, Razinger M (1994) Stereochemistry and sequence rules—a proposal for modification of Cahn–Ingold–Prelog system. Tetrahedron Asymmetry 5(5):835–861. https://doi.org/10.1016/s0957-4166(00)86237-0
Cieplak T, Wisniewski JL (2001) A new effective algorithm for the unambiguous identification of the stereochemical characteristics of compounds during their registration in databases. Molecules 6(11):915–926. https://doi.org/10.3390/61100915
Wild DJ (2009) Grand challenges for cheminformatics. J Cheminform 1:1. https://doi.org/10.1186/1758-2946-1-1
Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9(4):273–276. https://doi.org/10.1038/nrd3139
Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5(4):385–415. https://doi.org/10.1002/anie.196603851
Ertl P (2010) Molecular structure input on the web. J Cheminform 2:1. https://doi.org/10.1186/1758-2946-2-1
Morgan HL (1965) The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. J Chem Doc 5(2):107–113. https://doi.org/10.1021/c160017a018
Figueras J (1993) Morgan revisited. J Chem Inf Comput Sci 33(5):717–718. https://doi.org/10.1021/ci00015a009
Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S (1994) Computation and management of chemical-properties in CACTVS—an extensible networked approach toward modularity and compatibility. J Chem Inf Comput Sci 34(1):109–116. https://doi.org/10.1021/ci00017a013
Ihlenfeldt WD, Gasteiger J (1994) Hash codes for the identification and classification of molecular-structure elements. J Comput Chem 15(8):793–813. https://doi.org/10.1002/jcc.540150802
CACTVS Chemoinformatics Toolkit version 3.365, Xemistry GmbH, Lahntal, Germany. http://www.xemistry.com
NCBI C++ Toolkit. http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
InChI Trust, InChI software version 1.04 for Standard and Non-Standard InChI/InChIKey. http://www.inchi-trust.org/fileadmin/user_upload/software/inchi-v1.04/INCHI-1-API.ZIP
PubChem FTP. ftp://ftp.ncbi.nlm.nih.gov/pubchem/