Ptpn20 deletion in H-Tx rats enhances phosphorylation of the NKCC1 cotransporter in the choroid plexus: an evidence of genetic risk for hydrocephalus in an experimental study

Hao Xu1, Masakazu Miyajima2, Madoka Nakajima1, Ikuko Ogino1, Kaito Kawamura1, Chihiro Akiba2, Chihiro Kamohara1, Koichiro Sakamoto1, Kostadin Karagiozov1, Eri Nakamura3, Norio Tada3, Hajime Arai1, Akihide Kondo1
1Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
2Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
3Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan

Tóm tắt

Abstract Background Congenital hydrocephalus occurs with some inheritable characteristics, but the mechanisms of its development remain poorly understood. Animal models provide the opportunity to identify potential genetic causes in this condition. The Hydrocephalus-Texas (H-Tx) rat strain is one of the most studied animal models for investigating the causative genetic alterations and analyzing downstream pathogenetic mechanisms of congenital hydrocephalus. Methods Comparative genomic hybridization (CGH) array on non-hydrocephalic and hydrocephalic H-Tx rats was used to identify causative genes of hydrocephalus. Targeted gene knockout mice were generated by CRISPR/Cas9 to study the role of this gene in hydrocephalus. Results CGH array revealed a copy number loss in chromosome 16p16 region in hydrocephalic H-Tx rats at 18 days gestation, encompassing the protein tyrosine phosphatase non-receptor type 20 (Ptpn20), a non-receptor tyrosine phosphatase, without change in most non-hydrocephalic H-Tx rats. Ptpn20-knockout (Ptpn20−/−) mice were generated and found to develop ventriculomegaly at 8 weeks. Furthermore, high expression of phosphorylated Na-K-Cl cotransporter 1 (pNKCC1) was identified in the choroid plexus (CP) epithelium of mice lacking Ptpn20 from 8 weeks until 72 weeks. Conclusions This study determined the chromosomal location of the hydrocephalus-associated Ptpn20 gene in hydrocephalic H-Tx rats. The high level of pNKCC1 mediated by Ptpn20 deletion in CP epithelium may cause overproduction of cerebrospinal fluid and contribute to the formation of hydrocephalus in Ptpn20−/− mice. Ptpn20 may be a potential therapeutic target in the treatment of hydrocephalus.

Từ khóa


Tài liệu tham khảo

Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2018. https://doi.org/10.3171/2017.10.JNS17439.

Garton HJ. Cerebrospinal fluid diversion procedures. J Neuroophthalmol. 2004;24(2):146–55. https://doi.org/10.1097/00041327-200406000-00010.

Al-Dosari MS, Al-Owain M, Tulbah M, Kurdi W, Adly N, Al-Hemidan A, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet. 2013;50(1):54–8. https://doi.org/10.1136/jmedgenet-2012-101294.

Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D, Lorenz I, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 2010;1(3):99–112. https://doi.org/10.1159/000319859.

Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet. 1992;2(2):107–12. https://doi.org/10.1038/ng1092-107.

Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, Delezoide AL, Razavi F, Drouot N, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126(3):427–42. https://doi.org/10.1007/s00401-013-1146-1.

Meiniel A. The secretory ependymal cells of the subcommissural organ: which role in hydrocephalus? Int J Biochem Cell Biol. 2007;39(3):463–8. https://doi.org/10.1016/j.biocel.2006.10.021.

Merchant M, Evangelista M, Luoh SM, Frantz GD, Chalasani S, Carano RA, et al. Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol. 2005;25(16):7054–68. https://doi.org/10.1128/MCB.25.16.7054-7068.2005.

Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus. J Neurol. 2006;253(10):1255–66. https://doi.org/10.1007/s00415-006-0245-5.

Sasaki S, Goto H, Nagano H, Furuya K, Omata Y, Kanazawa K, et al. Congenital hydrocephalus revealed in the inbred rat, LEW/Jms. Neurosurgery. 1983;13(5):548–54. https://doi.org/10.1227/00006123-198311000-00011.

Clark FH. Linkage studies of Brachyury (Short Tail) in the house mouse. Proc Natl Acad Sci USA. 1934;20(5):276–9. https://doi.org/10.1073/pnas.20.5.276.

Hong HK, Chakravarti A, Takahashi JS. The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA. 2004;101(6):1748–53. https://doi.org/10.1073/pnas.0308268100.

Cohen AR, Leifer DW, Zechel M, Flaningan DP, Lewin JS, Lust WD. Characterization of a model of hydrocephalus in transgenic mice. J Neurosurg. 1999;91(6):978–88. https://doi.org/10.3171/jns.1999.91.6.0978.

Kohn DF, Chinookoswong N, Chou SM. A new model of congenital hydrocephalus in the rat. Acta Neuropathol. 1981;54(3):211–8. https://doi.org/10.1007/BF00687744.

Jones HC, Lopman BA, Jones TW, Carter BJ, Depelteau JS, Morel L. The expression of inherited hydrocephalus in H-Tx rats. Childs Nerv Syst. 2000;16(9):578–84. https://doi.org/10.1007/s003810000330.

Jones HC, Bucknall RM. Inherited prenatal hydrocephalus in the H-Tx rat: a morphological study. Neuropathol Appl Neurobiol. 1988;14(4):263–74. https://doi.org/10.1111/j.1365-2990.1988.tb00887.x.

Oi S, Yamada H, Sato O, Matsumoto S. Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst. 1996;12(6):292–302. https://doi.org/10.1007/BF00301016.

Cai X, McGraw G, Pattisapu JV, von Kalm L, Willingham S, Socci D, et al. Hydrocephalus in the H-Tx rat: a monogenic disease? Exp Neurol. 2000;163(1):131–5. https://doi.org/10.1006/exnr.1999.7301.

Jones HC, Carter BJ, Depelteau JS, Roman M, Morel L. Chromosomal linkage associated with disease severity in the hydrocephalic H-Tx rat. Behav Genet. 2001;31(1):101–11. https://doi.org/10.1023/a:1010266110762.

Jones HC, Chen GF, Yehia BR, Carter BJ, Akins EJ, Wolpin LC. Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome. 2005;16(4):251–61. https://doi.org/10.1007/s00335-004-2390-4.

Jones HC, Depelteau JS, Carter BJ, Lopman BA, Morel L. Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome. 2001;12(1):22–6. https://doi.org/10.1007/s003350010226.

Jones HC, Harris NG, Rocca JR, Andersohn RW. Progressive tissue injury in infantile hydrocephalus and prevention/reversal with shunt treatment. Neurol Res. 2000;22(1):89–96. https://doi.org/10.1080/01616412.2000.11741041.

Jones HC, Yehia B, Chen GF, Carter BJ. Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol. 2004;190(1):79–90; doi: https://doi.org/10.1016/j.expneurol.2004.06.019.

Delpire E, Gagnon KB. Na+‐K+‐2Cl− cotransporter (NKCC) physiological function in nonpolarized cells and transporting epithelia. Compr Physiol. 2018;8(2):871–901. https://doi.org/10.1002/cphy.c170018.

Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89(1):193–277. https://doi.org/10.1152/physrev.00037.2007.

Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E. Expression of the Na(+)-K(+)-2Cl− cotransporter BSC2 in the nervous system. Am J Physiol. 1997;272(1 Pt 1):C173–83. https://doi.org/10.1152/ajpcell.1997.272.1.C173.

Wu Q, Delpire E, Hebert SC, Strange K. Functional demonstration of Na+-K+-2Cl− cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol. 1998;275(6):C1565–72. https://doi.org/10.1152/ajpcell.1998.275.6.C1565.

Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na. Am J Physiol Cell Physiol. 2019;316(4):C525–44. https://doi.org/10.1152/ajpcell.00026.2018.

Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018;9(1):2167. https://doi.org/10.1038/s41467-018-04677-9.

Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della Syau, et al. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun. 2021;12(1):447. https://doi.org/10.1038/s41467-020-20666-3.

Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132(23):5329–39. https://doi.org/10.1242/dev.02153.

Liu B, Chen S, Johnson C, Helms JA. A ciliopathy with hydrocephalus, isolated craniosynostosis, hypertelorism, and clefting caused by deletion of Kif3a. Reprod Toxicol. 2014;48:88–97. https://doi.org/10.1016/j.reprotox.2014.05.009.

Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS. 2012;9(1):22. https://doi.org/10.1186/2045-8118-9-22.

Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. https://doi.org/10.1186/2045-8118-11-10.

Javaheri S, Wagner KR. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest. 1993;92(5):2257–61. https://doi.org/10.1172/JCI116829.

Keep RF, Xiang J, Betz AL. Potassium cotransport at the rat choroid plexus. Am J Physiol. 1994;267(6 Pt 1):C1616–22. https://doi.org/10.1152/ajpcell.1994.267.6.C1616.

Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol. 1978;83:3–34.

Zhang J, Cordshagen A, Medina I, Nothwang HG, Wisniewski JR, Winklhofer M, et al. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS ONE. 2020;15(5):e0232967. https://doi.org/10.1371/journal.pone.0232967.

Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003. https://doi.org/10.1038/nm.4361.

Lee H, Yi JS, Lawan A, Min K, Bennett AM. Mining the function of protein tyrosine phosphatases in health and disease. Semin Cell Dev Biol. 2015;37:66–72. https://doi.org/10.1016/j.semcdb.2014.09.021.

Fodero-Tavoletti MT, Hardy MP, Cornell B, Katsis F, Sadek CM, Mitchell CA, et al. Protein tyrosine phosphatase hPTPN20a is targeted to sites of actin polymerization. Biochem J. 2005;389(Pt 2):343–54. https://doi.org/10.1042/BJ20041932.

Matthews JB, Smith JA, Hrnjez BJ. Effects of F-actin stabilization or disassembly on epithelial Cl− secretion and Na-K-2Cl cotransport. Am J Physiol. 1997;272(1 Pt 1):C254–62. https://doi.org/10.1152/ajpcell.1997.272.1.C254.

Matthews JB, Smith JA, Mun EC, Sicklick JK. Osmotic regulation of intestinal epithelial Na(+)-K(+)-Cl− cotransport: role of Cl− and F-actin. Am J Physiol. 1998;274(3):C697–706. https://doi.org/10.1152/ajpcell.1998.274.3.C697.

Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev. 2012;92(4):1577–617. https://doi.org/10.1152/physrev.00009.2012.

Lytle C. Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites. J Biol Chem. 1997;272(24):15069–77. https://doi.org/10.1074/jbc.272.24.15069.

Paul S, Lombroso PJ. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell Mol Life Sci. 2003;60(11):2465–82. https://doi.org/10.1007/s00018-003-3123-7.

Aziz AA, Coleman L, Morokoff A, Maixner W. Diffuse choroid plexus hyperplasia: an under-diagnosed cause of hydrocephalus in children? Pediatr Radiol. 2005;35(8):815–8. https://doi.org/10.1007/s00247-005-1456-0.

Bettegowda C, Adogwa O, Mehta V, Chaichana KL, Weingart J, Carson BS, et al. J Neurosurg Pediatr. 2012;10(5):398–405. https://doi.org/10.3171/2012.8.PEDS12132.

Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, et al. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus. 2016;41(5):E10. https://doi.org/10.3171/2016.8.FOCUS16278.

Bateman GA. Hemodynamically significant venous collapse underlying neonatal hydrocephalus. J Neurosurg Pediatr. 2014;13(2):125–32. https://doi.org/10.3171/2013.10.PEDS13343.

Bateman GA, Smith RL, Siddique SH. Idiopathic hydrocephalus in children and idiopathic intracranial hypertension in adults: two manifestations of the same pathophysiological process? J Neurosurg. 2007;107(6 Suppl):439–44. https://doi.org/10.3171/PED-07/12/439.

Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002;36(6):281–303. https://doi.org/10.1159/000063533.

Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005;2:6. https://doi.org/10.1186/1743-8454-2-6.

Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, et al. Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 2013;352(3):707–25. https://doi.org/10.1007/s00441-013-1615-9.

Somera KC, Jones HC. Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus. Cell Tissue Res. 2004;315(3):361–73. https://doi.org/10.1007/s00441-003-0843-9.

Vio K, Rodríguez S, Navarrete EH, Pérez-Fígares JM, Jiménez AJ, Rodríguez EM. Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000;135(1):41–52. https://doi.org/10.1007/s002210000474.

Vio K, Rodríguez S, Yulis CR, Oliver C, Rodríguez EM. The subcommissural organ of the rat secretes Reissner’s fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments. Cerebrospinal Fluid Res. 2008;5:3. https://doi.org/10.1186/1743-8454-5-3.

Pérez-Fígares JM, Jimenez AJ, Rodríguez EM. Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech. 2001;52(5):591–607. https://doi.org/10.1002/1097-0029(20010301)52:5%3c591::AID-JEMT1043%3e3.0.CO;2-7.

Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet. 1997;17(3):346–9. https://doi.org/10.1038/ng1197-346.

Rolf B, Kutsche M, Bartsch U. Severe hydrocephalus in L1-deficient mice. Brain Res. 2001;891(1–2):247–52. https://doi.org/10.1016/s0006-8993(00)03219-4.

Helland CA, Aarhus M, Knappskog P, Olsson LK, Lund-Johansen M, Amiry-Moghaddam M, et al. Increased NKCC1 expression in arachnoid cysts supports secretory basis for cyst formation. Exp Neurol. 2010;224(2):424–8. https://doi.org/10.1016/j.expneurol.2010.05.002.

Johnson MD, O’Connell M. Na-K-2Cl cotransporter and aquaporin 1 in arachnoid granulations, meningiomas, and meningiomas invading dura. Hum Pathol. 2013;44(6):1118–24. https://doi.org/10.1016/j.humpath.2012.09.020.

MacAulay N, Rose CR. CrossTalk opposing view: NKCC1 in the luminal membrane of choroid plexus is outwardly directed under basal conditions and contributes directly to cerebrospinal fluid secretion. J Physiol. 2020;598(21):4737–9. https://doi.org/10.1113/JP279868.

Dewan MC, Naftel RP. The global rise of endoscopic third ventriculostomy with choroid plexus cauterization in pediatric hydrocephalus. Pediatr Neurosurg. 2017;52(6):401–8. https://doi.org/10.1159/000452809.

Milhorat TH. Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974;139(4):505–8.

Zhu X, Di Rocco C. Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Childs Nerv Syst. 2013;29(1):35–42. https://doi.org/10.1007/s00381-012-1960-0.

Bankole OB, Ojo OA, Nnadi MN, Kanu OO, Olatosi JO. Early outcome of combined endoscopic third ventriculostomy and choroid plexus cauterization in childhood hydrocephalus. J Neurosurg Pediatr. 2015;15(5):524–8. https://doi.org/10.3171/2014.10.PEDS14228.

Stone SS, Warf BC. Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infant hydrocephalus: a prospective North American series. J Neurosurg Pediatr. 2014;14(5):439–46. https://doi.org/10.3171/2014.7.PEDS14152.

Warf B, Ondoma S, Kulkarni A, Donnelly R, Ampeire M, Akona J, et al. Neurocognitive outcome and ventricular volume in children with myelomeningocele treated for hydrocephalus in Uganda. J Neurosurg Pediatr. 2009;4(6):564–70. https://doi.org/10.3171/2009.7.PEDS09136.

Warf BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005;103(6 Suppl):475–81. https://doi.org/10.3171/ped.2005.103.6.0475.

Warf BC, Tracy S, Mugamba J. Long-term outcome for endoscopic third ventriculostomy alone or in combination with choroid plexus cauterization for congenital aqueductal stenosis in African infants. J Neurosurg Pediatr. 2012;10(2):108–11. https://doi.org/10.3171/2012.4.PEDS1253.

Morota N, Fujiyama Y. Endoscopic coagulation of choroid plexus as treatment for hydrocephalus: indication and surgical technique. Childs Nerv Syst. 2004;20(11–12):816–20. https://doi.org/10.1007/s00381-004-0936-0.

Warf BC. Congenital idiopathic hydrocephalus of infancy: the results of treatment by endoscopic third ventriculostomy with or without choroid plexus cauterization and suggestions for how it works. Childs Nerv Syst. 2013;29(6):935–40. https://doi.org/10.1007/s00381-013-2072-1.

Kulkarni AV, Riva-Cambrin J, Rozzelle CJ, Naftel RP, Alvey JS, Reeder RW, et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infant hydrocephalus: a prospective study by the hydrocephalus clinical research network. J Neurosurg Pediatr. 2018;21(3):214–23. https://doi.org/10.3171/2017.8.PEDS17217.

Huang H, Song S, Banerjee S, Jiang T, Zhang J, Kahle KT, et al. The WNK-SPAK/OSR1 kinases and the cation-chloride cotransporters as therapeutic targets for neurological diseases. Aging Dis. 2019;10(3):626–36. https://doi.org/10.14336/AD.2018.0928.

Wang J, Liu R, Hasan MN, Fischer S, Chen Y, Como M, et al. Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke. J Neuroinflamm. 2022;19(1):91. https://doi.org/10.1186/s12974-022-02456-4.

Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, et al. The choroid plexus is an important circadian clock component. Nat Commun. 2018;9(1):1062. https://doi.org/10.1038/s41467-018-03507-2.

Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519(7544):455–9. https://doi.org/10.1038/nature13978.

Duarte AC, Furtado A, Hrynchak MV, Costa AR, Talhada D, Gonçalves I, et al. Age, sex hormones, and circadian rhythm regulate the expression of amyloid-beta scavengers at the choroid plexus. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21186813.