Pseudo-polyharmonic vectorial approximation for div-curl and elastic semi-norms

Springer Science and Business Media LLC - Tập 109 - Trang 333-364 - 2008
Mohammed-Najib Benbourhim1, Abderrahman Bouhamidi2
1Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France
2L.M.P.A, CNRS-FR2956, Université du Littoral Côte d’Opale, Calais Cedex, France

Tóm tắt

Vector field reconstruction is a problem arising in many scientific applications. In this paper, we study a div-curl approximation of vector fields by pseudo-polyharmonic splines. This leads to the variational smoothing and interpolating spline problems with minimization of an energy involving the curl and the divergence of the vector field. The relationship between the div-curl energy and elastic energy is established. Some examples are given to illustrate the effectiveness of our approach for a vector field reconstruction.

Tài liệu tham khảo

Amodei L. and Benbourhim M.N. (1991). A vector spline approximation. J. Approx. Theory 67: 51–79 Amodei L. and Benbourhim M.N. (1991). A vector spline approximation with application to meteorology. In: Laurent, P.J., Le Méhauté, A. and Schumaker, L.L. (eds) Curves and Surfaces, pp 5–10. Academic Press, New York Arcangéli R. (2004). Maria Cruz Lopez de Silanes and Juan Jose Torrens, Multidimensional Minimizing Splines. Kluwer Academic Publishers, Dordrecht Atteia M. (1992). Hilbertian Kernels and Spline Functions. North-Holland/Elsevier Science, Amsterdam Atteia M. and Benbourhim M.N. (1989). Spline elastic manifolds. In: Lyche, T. and Schumaker, L.L. (eds) Mathematical methods in Computer Aided Geometric Design, pp 45–50. Academic Press, Boston Atteia, M., Benbourhim, M.N., Casanova, P.G.: Quasi-interpolants elastic manifolds. In: Reporte de Investigation IIMAS. UNAM 3 (25) Mexico (1993) Benbourhim M.N. and Bouhamidi A. (2005). Approximation of vector fields by thin plate splines with tension. J. Approx. Theory 136: 198–229 Benbourhim, M.N., Casanova, P.G.: Generalized variationalquasi-interpolants in (H m (Ω))n. Bol. Soc. Mat. Mexicana 3(3), (1997) Bergman S. and Schiffer M. (1953). Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, London Bezhaev A.Y. and Vasilenko V.A. (2001). Variational Theory of Splines. Kluwer/Plenum, Dordrecht/New York Bouhamidi A. and Le Méhauté A. (1999). Multivariate interpolating (m,ℓ,s)-splines. Adv. Comput. Math. 11: 287–314 Bouhamidi A. (2005). Weighted thin plate splines. Anal. Appl. 3(3): 297–324 Buhmann, M.D.: Radial basis functions: theory and implementation. Cambridge monographs on applied and computational mathematics 12 (2003) Chen, F., Suter, S.: Elastic spline models for human cardiac motion estimation. IEEE Nonrigid and Articulated Motion Workshop, Puerto Rico, pp. 120–127 (1997) Chen, F., Suter, S.: Image coordinate transformation based on div-curl vector splines. In: Procedings 14th International Conferences Pattern Recognition (ICPR’98), vol. I, pp. 518–520. Brisbane, Australia, 16–20 (1998) Ciarlet P. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam Daley R. (1985). The analysis of synoptic-scale divergence by statical interpolation scheme, Month. Weather Rev. 113: 1066–1079 Deny J. and Lions J.L. (1954). Les espaces du type de Beppo-Levi. Ann. Inst. Fourier 5: 305–370 Dodu F. and Rabut C. (2002). Vectorial interpolation using radial-basis-like functions. Comput. Math. Appl. 43: 393–411 Duchon J. (1977). Splines minimizing rotation-invariant seminorms in Sobolev spaces. In: Schempp, W. and Zeller, K. (eds) Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, vol. 571, pp 85–100. Springer, Berlin Duchon J. (1976). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Numer. 10(12): 5–12 Duchon, J.: Fonctions-splines Homogènes à plusieurs variables, Thèse (1980) Université de Grenoble Duchon, J.: Fonctions-spline à energie invariante par rotation, Rapport de recherche 27, IMAG, Université de Grenoble, (1976) Golub G.H., Heath M. and Wahba G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21: 215–223 Hansen P.C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34: 561–580 Iwaniec T. and Sbordone C. (2001). Quasiharmonic fields. Ann. I. H. Poincaré-AN 18(5): 519–572 Laurent P.J. (1972). Approximation et Optimisation. Hermann, Paris Peetre J. (1966). Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier, Grenoble 16: 279–317 Schaback R. (1995). Mutivariate interpolation and approximation by translates of a basis functions. In: Chui, C.K. and Schumaker, L.L. (eds) Approximation Theory VIII: Approximation and Interpolation, vol. 1, pp 491–514. World Scientific, Singapore Schwartz L. (1966). Théorie des Distibutions. Hermann, Paris Stein E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton University Press, USA Suter, D.: Motion estimation and vector splines. In: Proc. CVPR’94, pp. 939–942. Seattle WA, IEEE (June 1994) Suter D. and Chen F. (2000). Left ventricular motion reconstruction based on elastic vector splines. IEEE Trans. Med. Imag. 19(4): 295–305 Sorzano C.O.S., Thévenaz P. and Unser M. (2005). Elastic registration of biological images using vector-splines regularization. IEEE Trans. Biomedical Eng. 52(4): 652–663