Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation

Molecular Biology of the Cell - Tập 22 Số 23 - Trang 4602-4620 - 2011
Fumiko Matsuzaki1, Michiko Shirane1, Masaki Matsumoto1,2, Keiichi I. Nakayama1
1Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan
2Research Center for Transomics Medicine

Tóm tắt

Neurons are highly polarized cells with long neurites. Vesicular transport is required for neurite extension. We recently identified protrudin as a key regulator of vesicular transport during neurite extension. Expression of protrudin in nonneuronal cells thus induces formation of neurite-like membrane protrusions. We adopted a proteomics approach to identify proteins that associate with protrudin. Among the protrudin-associated proteins, including many with a function related to intracellular trafficking, we focused on KIF5, a motor protein that mediates anterograde vesicular transport in neurons. A coimmunoprecipitation assay confirmed that endogenous protrudin and KIF5 interact in mouse brain. Overexpression of KIF5 induced the formation of membrane protrusions in HeLa cells, reminiscent of the effect of protrudin overexpression. Forced expression of both protrudin and KIF5 promoted protrusion extension in a synergistic manner, whereas depletion of either protein attenuated protrusion formation. Protrudin facilitated the interaction of KIF5 with Rab11, VAP-A and -B, Surf4, and RTN3, suggesting that protrudin serves as an adaptor protein and that the protrudin–KIF5 complex contributes to the transport of these proteins in neurons. Given that mutation of protrudin or KIF5 is a cause of human hereditary spastic paraplegia, the protrudin–KIF5 axis appears to be integral to neuronal function.

Từ khóa


Tài liệu tham khảo

Belden WJ, 2001, Science, 294, 1528, 10.1126/science.1065224

Blasius TL, 2007, J Cell Biol, 176, 11, 10.1083/jcb.200605099

Cai D, 2007, J Cell Biol, 176, 51, 10.1083/jcb.200605097

Calhoun BC, 1997, Biochem J, 325, 559, 10.1042/bj3250559

Chai A, 2008, Hum Mol Genet, 17, 266, 10.1093/hmg/ddm303

Chen HJ, 2010, J Biol Chem, 285, 40266, 10.1074/jbc.M110.161398

Cho KI, 2007, Traffic, 8, 1722, 10.1111/j.1600-0854.2007.00647.x

Coy DL, 1999, Nat Cell Biol, 1, 288, 10.1038/13001

Deluca GC, 2004, Neuropathol Appl Neurobiol, 30, 576, 10.1111/j.1365-2990.2004.00587.x

Ferreira A, 1992, J Cell Biol, 117, 595, 10.1083/jcb.117.3.595

Foster LJ, 2000, Traffic, 1, 512, 10.1034/j.1600-0854.2000.010609.x

Futerman AH, 1996, Trends Neurosci, 19, 144, 10.1016/S0166-2236(96)80025-7

Glater EE, 2006, J Cell Biol, 173, 545, 10.1083/jcb.200601067

Goizet C, 2009, Hum Mutat, 30, E376, 10.1002/humu.20920

Goldstein AY, 2008, Curr Opin Neurobiol, 18, 495, 10.1016/j.conb.2008.10.003

Goldstein LS, 2001, Proc Natl Acad Sci USA, 98, 6999, 10.1073/pnas.111145298

Gyoeva FK, 2004, Biochemistry, 43, 13525, 10.1021/bi049288l

He W, 2004, Nat Med, 10, 959, 10.1038/nm1088

Hirokawa N, 2008, Physiol Rev, 88, 1089, 10.1152/physrev.00023.2007

Hirokawa N, 2009, Nat Rev Mol Cell Biol, 10, 682, 10.1038/nrm2774

Hu J, 2009, Cell, 138, 549, 10.1016/j.cell.2009.05.025

Hu X, 2007, EMBO J, 26, 2755, 10.1038/sj.emboj.7601707

Jiang MY, 1995, Biophys J, 68, 283S

Kessler A, 2000, Diabetologia, 43, 1518, 10.1007/s001250051563

Kimura T, 2005, J Neurochem, 93, 1371, 10.1111/j.1471-4159.2005.03063.x

Konishi Y, 2009, Nat Neurosci, 12, 559, 10.1038/nn.2314

Lapierre LA, 2000, Adv Drug Deliv Rev, 41, 255, 10.1016/S0169-409X(00)00045-4

Lapierre LA, 2007, Am J Physiol Gastrointest Liver Physiol, 292, G1249, 10.1152/ajpgi.00505.2006

Lapierre LA, 1999, J Cell Sci, 112, 3723, 10.1242/jcs.112.21.3723

Mannan AU, 2008, Am J Hum Genet, 83, 128, 10.1016/j.ajhg.2008.05.018

Mannan AU, 2006, Neurogenetics, 7, 93, 10.1007/s10048-006-0034-4

Mannan AU, 2006, Am J Hum Genet, 79, 351, 10.1086/504927

Martignoni M, 2008, Am J Hum Genet, 83, 127, 10.1016/j.ajhg.2008.05.014

Matsumoto M, 2009, Proteomics, 9, 3549, 10.1002/pmic.200900011

Murayama KS, 2006, Eur J Neurosci, 24, 1237, 10.1111/j.1460-9568.2006.05005.x

Nakata T, 1995, J Cell Biol, 131, 1039, 10.1083/jcb.131.4.1039

Nishimura AL, 2005, Hum Genet, 118, 499, 10.1007/s00439-005-0031-y

Nishimura AL, 2004, Am J Hum Genet, 75, 822, 10.1086/425287

Niwa S, 2008, Nat Cell Biol, 10, 1269, 10.1038/ncb1785

Park SH, 2010, J Clin Invest, 120, 1097, 10.1172/JCI40979

Pennetta G, 2002, Neuron, 35, 291, 10.1016/S0896-6273(02)00769-9

Prior M, 2010, Neurosci Biobehav Rev, 34, 1201, 10.1016/j.neubiorev.2010.01.017

Reeves JE, 1995, Mol Membr Biol, 12, 201, 10.3109/09687689509027508

Reid E, 1997, J Med Genet, 34, 499, 10.1136/jmg.34.6.499

Reid E, 2002, Am J Hum Genet, 71, 1189, 10.1086/344210

Saita S, 2009, J Biol Chem, 284, 13766, 10.1074/jbc.M807938200

Salinas S, 2007, J Neurosci Res, 85, 2778, 10.1002/jnr.21238

Salinas S, 2008, Lancet Neurol, 7, 1127, 10.1016/S1474-4422(08)70258-8

Setou M, 2002, Nature, 417, 83, 10.1038/nature743

Sheehan D, 1996, NeuroReport, 7, 1297, 10.1097/00001756-199605170-00016

Shirane M, 2006, Science, 314, 818, 10.1126/science.1134027

Skehel PA, 1995, Science, 269, 1580, 10.1126/science.7667638

Stenmark H, 2009, Nat Rev Mol Cell Biol, 10, 513, 10.1038/nrm2728

Su Q, 2004, Nat Cell Biol, 6, 941, 10.1038/ncb1169

Tang BL, 2001, J Neurochem, 79, 923, 10.1046/j.1471-4159.2001.00674.x

Uhlig M, 2005, Mol Cell Endocrinol, 235, 1, 10.1016/j.mce.2005.02.004

Ullrich O, 1993, J Biol Chem, 268, 18143, 10.1016/S0021-9258(17)46822-0

Wang Z, 2008, Cell, 135, 535, 10.1016/j.cell.2008.09.057

Weir ML, 2001, Biochem Biophys Res Commun, 286, 616, 10.1006/bbrc.2001.5437

Yada M, 2004, EMBO J, 23, 2116, 10.1038/sj.emboj.7600217

Yang JT, 1989, Cell, 56, 879, 10.1016/0092-8674(89)90692-2