Proteomics in China: Ready for prime time

Springer Science and Business Media LLC - Tập 53 - Trang 22-33 - 2010
Xue Gao1, XueLi Zhang1, JunJie Zheng1, FuChu He1,2
1State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
2Institutes of Biomedical Sciences, Fudan University, Shanghai, China

Tóm tắt

Proteomics is a newborn science focusing on the comprehensive systematic analysis of all proteins in the molecule machineries, organelles, cells, tissues, organs or intact organisms. It has been becoming one of the focuses in life sciences and the cutting-edged techniques in biotechnologies in the 21st century. During last decade, proteomics in China has developed much faster than other developing fields in life sciences. This review article briefly retrospects the origin and development of proteomics in China, also provides an overview on the representative scientific progress and perspectives.

Tài liệu tham khảo

Francis S, Eric D, Alan E, et al. A vision for the future of genomics research. Nature, 2003, 422: 1–13 Gagloiti F. Human Genome Project completed: An extraordinary scientific achievement. World Socialist Web Site. 2003. Available from: http://www.wsws.org/articles/2003/may2003/gene-m07.shtml Stanley F. Proteomics in genomeland. Science, 2001, 291: 1221, 10.1126/science.291.5507.1221 Wilkins, M, Pasquali C, Appel R, et al. From proteins to proteomes: Large scale protein identification by two dimensional electrophoresis and amino acid analysis. Biotechnology, 1996,14: 61–65, 9636313, 10.1038/nbt0196-61, 1:CAS:528:DyaK28Xisl2nsw%3D%3D Alison A. And now for the proteome..., Nature, 2001, 409:747–768 Service R. Proteomics. Can Celera do it again? Science, 2000, 287: 2136–2138, 10744530, 10.1126/science.287.5461.2136, 1:CAS:528:DC%2BD3cXitlSgtLc%3D He F. Proteomics in China. Proteomics, 2006, 6: 397–403, 16419014, 10.1002/pmic.200690008, 1:CAS:528:DC%2BD28Xhs1ehtrs%3D He F, Liu S. CNHUPO: Pioneer and Vigorous Roles for Proteomics Investigation in China. Mol Cell Proteomics, 2008, 7: 1186–1187, 18525077, 1:CAS:528:DC%2BD1cXns1yntrg%3D Stone R. Biologists muscle up with major new protein facilities. Science, 2009, 13, 323: 1417, 10.1126/science.323.5920.1417 Wan J, Qian X, Guo Y, et al. Preliminary establishment and optimization of two dimensional gel electrophoresis (2DE) for the proteome analysis. Bull Acad Mil Med Sci (in Chinese), 1998, 22: 297–300, 1:CAS:528:DyaK1MXovFSlsA%3D%3D Hu Z, Wan J, Wang L, et al. Bull Acad Mil Med Sci (in Chinese), 1998, 22: 301–304, 1:CAS:528:DyaK1MXovFSlsQ%3D%3D Lai C, Chou C, Chang L, et al. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res, 2000, 10: 703–713, 10810093, 10.1101/gr.10.5.703, 1:CAS:528:DC%2BD3cXjsFegtb0%3D Yu L, Shao X, Jiang W, et al. Proteome alterations in human hepatoma cells transfected with antisense epidermal growth factor receptor sequence. Electrophoresis, 2001, 22: 3001–3008, 11565794, 10.1002/1522-2683(200108)22:14<3001::AID-ELPS3001>3.0.CO;2-5, 1:CAS:528:DC%2BD3MXmvV2nsLo%3D Wan J, Wang J, Chen H, et al. Proteomic analysis of apoptosis initiation induced by all-trans retinoic acid in human acute promyelocytic leukemia cells. Electrophoresis, 2001, 21: 3026–3037, 10.1002/1522-2683(200108)22:14<3026::AID-ELPS3026>3.0.CO;2-8 Guo X, Ying W, Wan J, et al. Proteomic characterization of early stage differentiation of mouse embryonic stem cells into neural cells induced by retinoic acid in vitro. Electrophoresis, 2001, 21: 3067–3075, 10.1002/1522-2683(200108)22:14<3067::AID-ELPS3067>3.0.CO;2-V He F. Human liver proteome project, plan, progress, and perspectives. Mol Cell Proteomics, 2005, 4: 1841–1848, 16118399, 10.1074/mcp.R500013-MCP200, 1:CAS:528:DC%2BD2MXhtlWqsb7M Cyranoski D. China takes centre stage for liver proteome. Nature, 2003, 425: 441, 14523412, 1:CAS:528:DC%2BD3sXnslSjt7Y%3D Service R. Public projects gear up to chart the protein landscape. Science, 2003, 302: 1316–1318, 14631011, 10.1126/science.302.5649.1316, 1:CAS:528:DC%2BD3sXptlCqsL8%3D Jia H. China pushes liver proteomics. Nat Biotechnol, 2004, 22: 136, 14755276, 10.1038/nbt0204-136, 1:CAS:528:DC%2BD2cXnvFaqsw%3D%3D Li X, Gong Y, Wang Y, et al. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Proteomics, 2005, 5: 3423–3441, 16052619, 10.1002/pmic.200401226, 1:CAS:528:DC%2BD2MXps12itb8%3D Wang J, Gu Y, Wang L, et al. HUPO BPP pilot study: A proteomics analysis of the mouse brain of different developmental stages. Proteomics, 2007, 7: 4008–4015, 17922513, 10.1002/pmic.200700341, 1:CAS:528:DC%2BD2sXhtlOgurjM Hermjakob H, Montecchi-Palazzi L, Bader G, et al. The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol, 2004, 22: 177–183, 14755292, 10.1038/nbt926, 1:CAS:528:DC%2BD2cXnvFeisA%3D%3D Ying W, Jiang Y, Guo L, et al. A dataset of human fetal liver proteome identified by subcellular fractionation and multiple protein separation and identification technology. Mol Cell Proteomics, 2006, 5: 1703–1707, 16815949, 10.1074/mcp.M500344-MCP200, 1:CAS:528:DC%2BD28XpvVGgu7g%3D Chen M, Ying W, Song Y, et al. Analysis of human liver proteome using replicate shotgun strategy. Proteomics, 2007, 7: 2479–2488, 17623305, 10.1002/pmic.200600338, 1:CAS:528:DC%2BD2sXos1Ghtbg%3D Chinese Human Liver Proteome Profiling Consortium. First insight into human liver proteome from PROTEOMESKY LIVERHu 1.0, a publicly-available database. J Proteome Research, 2009, 9: 79–94 Gong Y, Li X, Yang B, et al. Different Immunoaffinity Fractionation Strategies to Characterize the Human Plasma Proteome. J Proteome Res, 2006, 6: 1379–1387, 10.1021/pr0600024, 1:CAS:528:DC%2BD28XktVerurk%3D Wu Y, Dai J, Yang X, et al. Concurrent quantification of proteome and phosphoproteome to reveal system-wide association of protein phosphorylation and gene expression. Mol Cell Proteomics. 2009 Aug 12 Cao J, Shen C, Wang H, et al. Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res, 2009, 8: 662–672, 19196183, 10.1021/pr800826u, 1:CAS:528:DC%2BD1MXlt1Snsg%3D%3D Sui S, Wang J, Yang B, et al. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics, 2008, 8: 2024–2034, 18491316, 10.1002/pmic.200700896, 1:CAS:528:DC%2BD1cXmvFWktL8%3D Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics, 2005, 4: 1480–1486, 15970581, 10.1074/mcp.M500055-MCP200, 1:CAS:528:DC%2BD2MXhtFeltbzP Li C, Hong Y, Tan Y, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics, 2004, 3: 399–409, 14726492, 10.1074/mcp.M300133-MCP200, 1:CAS:528:DC%2BD2cXivFCksLg%3D Gu X, Deng C, Yan G, et al. Capillary array reversed-phase liquid chromatography-based multi-dimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis. J Proteome Res, 2006, 5: 3186–3196, 17081071, 10.1021/pr0602592, 1:CAS:528:DC%2BD28XhtVOntbbJ Song C, Ye M, Han G, et al. Reversed-Phase-Reversed-Phase liquid chromatography approach with high orthogonality for multidimensional Separation of phosphopeptides. Anal Chem, 2010, 82: 53–56, 19950968, 10.1021/ac9023044, 1:CAS:528:DC%2BD1MXhsV2lur%2FK Jia W, Chen X, Lu H, et al. Communication CaCO3-Poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-Core removal for MALDI-TOF MS analysis. Angew Chem Int Ed Engl, 2006, 45: 3345–3349, 16602130, 10.1002/anie.200503485, 1:CAS:528:DC%2BD28XlsVOhur4%3D Jia W, Lu Z, Fu Y, et al. A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol Cell Proteomics, 2009, 8: 913–923, 19139490, 10.1074/mcp.M800504-MCP200, 1:CAS:528:DC%2BD1MXmtlGqtLw%3D Shun F, Ye M, Zhou H, et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphro proteome analysis. Mol Cell Proteomics, 2007, 6: 1656–1665, 10.1074/mcp.T600071-MCP200, 1:CAS:528:DC%2BD2sXhtVGqsr3O Wang J, Zhang Y, Jiang H, et al. Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS. Proteomics, 2006, 6: 404–411, 16342239, 10.1002/pmic.200500223 Tan F, Zhang Y, Mi W, et al. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J Proteome Res, 2008, 7: 1078–1087, 18266315, 10.1021/pr700655d, 1:CAS:528:DC%2BD1cXhsl2qurk%3D Zhang Y, Wang X, Shan W, et al. Enrichment of low abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew Chem Int Ed Engl, 2005, 44: 615–617, 15597394, 10.1002/anie.200460741, 1:CAS:528:DC%2BD2MXoslyjsg%3D%3D Liu H, Zhang Y, Wang J, et al. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Anal Chem, 2006, 78: 6614–6621, 16970341, 10.1021/ac060895j, 1:CAS:528:DC%2BD28XotFCrsLo%3D Liu H, Zhang Y, Meng L, et al. Non-Gel-Based Dual 18O labeling quantitative proteomics strategy. Anal Chem, 2007, 79: 7700–7707, 17867651, 10.1021/ac0709302, 1:CAS:528:DC%2BD2sXhtVCjsLvN Wu S, Zhu Y, He F. Strategy for the protein identification of human proteome expression profile: Selection of searching database. Yi Chuan, 2005, 27: 687–693, 16257892 Wu S, Xue X, Zhang J, et al. Reversed-shift database: Alternative method to evaluate peptide mass fingerprint results. Chin J Anal Chem (in Chinese), 2008, 4: 439–443 Li D, Liu W, Liu Z, et al. PRINCESS, a protein interaction confidence evaluation system with multiple data sources. Mol Cell Proteomics, 2008, 7: 1043–1052, 18230642, 10.1074/mcp.M700287-MCP200, 1:CAS:528:DC%2BD1cXns1ynsbo%3D Liu W, Li D, Zhang J, et al. SigFlux: A novel network feature to evaluate the importance of proteins in signal transduction networks. BMC Bioinformatics, 2006, 7: 515, 17129367, 10.1186/1471-2105-7-515, 1:CAS:528:DC%2BD28XhtlWlsb7J Liu W, Li D, Wang J, et al. Proteome-wide prediction of signal flow direction in protein interaction networks based on interacting domains. Mol Cell Proteomics, 2009, 8: 2063–2070, 19502588, 10.1074/mcp.M800354-MCP200, 1:CAS:528:DC%2BD1MXhtFCjsL7I Li H, Xing X, Ding G, et al. SysPTM: A systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics, 2009, 8: 1839–1849, 19366988, 10.1074/mcp.M900030-MCP200, 1:CAS:528:DC%2BD1MXhtVSjtbvE Xue Y, Ren J, Gao X, et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008, 7: 1598–1608, 18463090, 10.1074/mcp.M700574-MCP200, 1:CAS:528:DC%2BD1cXhtFantL%2FP Zheng J, Gao X, Beretta L, et al. The Human Liver Proteome Project (HLPP) workshop during the 4th HUPO World Congress. Proteomics, 2006, 6: 1716–1718, 16525995, 10.1002/pmic.200500877, 1:CAS:528:DC%2BD28XjtlKmsbw%3D Gao J, Gao Y, Ju Y, et al. Proteomics-based generation and characterization of monoclonal antibodies against human liver mitochondrial proteins. Proteomics, 2006, 6: 427–437, 16342244, 10.1002/pmic.200500409, 1:CAS:528:DC%2BD28Xhs1ehtrc%3D Ning Y, Wang Y, Li Y, et al. An alternative strategy for high throughput generation and characterization of monoclonal antibodies against human plasma proteins using fractionated native proteins as immunogens. Proteomics, 2006, 6: 438–448, 16419015, 10.1002/pmic.200500327, 1:CAS:528:DC%2BD28Xhs1eht74%3D Sun A, Jiang Y, Wang X, et al. Liverbase: A comprehensive view of human liver biology. J Proteome Res, 2009, 9: 50–58, 10.1021/pr900191p, 1:CAS:528:DC%2BD1MXhtVens77O Jiang Y, Wang Q, Wang J, et al. Profiling of phosphorylated proteins in human fetal liver. J Proteomics Bioinform, 2008, 1: 437–457, 10.4172/jpb.1000052, 1:CAS:528:DC%2BD1MXhtFaqtLY%3D Wang J, Yuan Y, Zhou Y, et al. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways. J Proteome Res, 2008, 7: 3879–3889, 18624398, 10.1021/pr8001645, 1:CAS:528:DC%2BD1cXosV2itro%3D Zhang X, Guo Y, Song Y, et al. Proteomic analysis of individual variation of normal liver in human being using difference gel electrophoresis. Proteomics, 2006, 6: 5260–5268, 16947120, 10.1002/pmic.200600006, 1:CAS:528:DC%2BD28XhtFarsb3K Lu Z, Wang J, Jia W, et al. Cleavage of amide bond during glycopeptide enrichment using wheat germ agglutinin affinity chromatography. Chin J Chrom (in Chinese), 2009, 27: 19–23, 1:CAS:528:DC%2BD1MXitV2gtLk%3D Lu Z, Jia W, Song L, et al. A novel enrichment method for glycopeptides based on membrane ultra-filtration. J Instrum Anal (in Chinese), 2009, 28: 644–648, 1:CAS:528:DC%2BD1MXht1GlurjJ Zhou T, Liang B, Su G, et al. Identification of ubiquitin target proteins using cell-based arrays. J Proteome Res, 2007, 6: 4397–4406, 17894482, 10.1021/pr070299l, 1:CAS:528:DC%2BD2sXhtVOqsrzP Wang Y, Cui F, Lv Y, et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology, 2004, 39: 318–324, 14767984, 10.1002/hep.20076, 1:CAS:528:DC%2BD2cXjtlait7k%3D Feng J, Liu Y, Song H. Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics, 2005, 5: 4581–4588, 16240287, 10.1002/pmic.200401309, 1:CAS:528:DC%2BD2MXht12nt7vM Ding S, Li Y, Tan Y, et al. From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics, 2004, 3: 73–81, 14593079, 1:CAS:528:DC%2BD2cXhtVantLs%3D Sun W, Xing B, Sun Y, et al. Proteome analysis of hepatocellular car cinoma by two-dimensional difference gel electrophoresis: Novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics, 2007, 6: 1798–1808, 17627933, 10.1074/mcp.M600449-MCP200, 1:CAS:528:DC%2BD2sXht1WksbvM Yi X, Luk J, Lee N, et al. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics, 2008, 7: 315–325, 17934217, 1:CAS:528:DC%2BD1cXitlyltr0%3D Bai D, Dai Z, Zhou J, et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology, 2009, 49: 460–470, 19053044, 10.1002/hep.22638, 1:CAS:528:DC%2BD1MXivFWhtrg%3D Sun S, Xu M, Poon R, et al. Circulating lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 2009, 9: 70–78, 10.1021/pr9002118, 1:CAS:528:DC%2BD1MXotV2nu7g%3D Chen N, Sun W, Deng X, et al. Quantitative proteome analysis of HCC cell lines with different metastatic potentials by SILAC. Proteomics, 2008, 8: 5108–5118, 19016532, 10.1002/pmic.200800280, 1:CAS:528:DC%2BD1MXlsFentQ%3D%3D Tong A, Wu L, Lin Q, et al. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics, 2008, 8: 2012–2023, 18491315, 10.1002/pmic.200700849, 1:CAS:528:DC%2BD1cXmvFWkt7c%3D Liu K, Qian L, Wang J, et al. Two-dimensional blue native/SDSPAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 cells. Mol Cell Proteomics, 2009, 8: 495–505, 18984579, 10.1074/mcp.M800250-MCP200, 1:CAS:528:DC%2BD1MXjt12jtLw%3D Wang J, Jiang D, Zhang H, et al. Proteome responses to stable hepatitis B virus transfection and following interferon alpha treatment in human liver cell line HepG2. Proteomics, 2009, 9: 1672–1682, 19242931, 10.1002/pmic.200800621, 1:CAS:528:DC%2BD1MXksVKqsrY%3D Liu Y, He J, Ji S, et al. Comparative studies of early liver dysfunction in senescence-accelerated mouse using mitochondrial proteomics approaches. Mol Cell Proteomics, 2008, 7: 1737–1747, 18515266, 10.1074/mcp.M800109-MCP200, 1:CAS:528:DC%2BD1cXhtFantL3N Zhang X, Yang J, Guo Y, et al. Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: ECHS1 down-regulation exacerbate hepatic steatosis. Hepatology, 2009, in press Li M, Xiao Z, Liu Y, et al. Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J Cell Biochem, 2009, 106: 570–579, 19142861, 10.1002/jcb.22028, 1:CAS:528:DC%2BD1MXjt12hsbY%3D Chen Y, Ouyang G, Yi H, et al. Identification of RKIP as an invasion suppressor protein in nasopharyngeal carcinoma by proteomic analysis. J Proteome Res, 2008, 7: 5254–5262, 19367706, 10.1021/pr800602c, 1:CAS:528:DC%2BD1cXhtlSnurzF Tong Y, Zhang Z, Liu B, et al. Autoantibodies as potential biomarkers for nasopharyngeal carcinoma. Proteomics, 2008, 8: 3185–3193, 18654982, 10.1002/pmic.200700651, 1:CAS:528:DC%2BD1cXhtVehsbjE Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics, 2005, 4: 1480–1486, 15970581, 10.1074/mcp.M500055-MCP200, 1:CAS:528:DC%2BD2MXhtFeltbzP Li C, Xiao Z, Chen Z, et al. Proteome analysis of human lung squamous carcinoma. Proteomics, 2006, 6: 547–558, 16342241, 10.1002/pmic.200500256, 1:CAS:528:DC%2BD28Xhs1ehtL8%3D Liu R, Li Z, Bai S, et al. Mechanism of cancer cell adaptation to metabolic stress: Proteomics identification of a novel thyroid hormone-mediated gastric carcinogenic signaling pathway. Mol Cell Proteomics, 2009, 8: 70–85, 18723843, 10.1074/mcp.M800195-MCP200, 1:CAS:528:DC%2BD1MXpsFeqsA%3D%3D Yang Y, Xiao Z, Chen Z, et al. Proteome analysis of multidrug resistance in vincristine-resistant human gastric cancer cell line SGC7901/VCR. Proteomics, 2006, 6: 2009–2021, 16525997, 10.1002/pmic.200402031, 1:CAS:528:DC%2BD28XjtlKmtL8%3D Hu H, Ran Y, Zhang Y, et al. Antibody library-based tumor endothelial cells surface proteomic functional screen reveals migration-stimulating factor as an anti-angiogenic target. Mol Cell Proteomics, 2009, 8: 816–826, 19117829, 10.1074/mcp.M800331-MCP200, 1:CAS:528:DC%2BD1MXksFWqur0%3D Yan S, Zhou C, Lou X, et al. PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res, 2009, 69: 3283–3290, 19351864, 10.1158/0008-5472.CAN-08-0367, 1:CAS:528:DC%2BD1MXksV2hsL8%3D Du X, Hu H, Lin D, et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med, 2007, 85: 863–875, 17318615, 10.1007/s00109-007-0159-4, 1:CAS:528:DC%2BD2sXnsl2gtrg%3D Ma Y, Peng J, Liu W, et al. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics, 2009, 8: 1878–1890, 19460759, 10.1074/mcp.M800541-MCP200, 1:CAS:528:DC%2BD1MXhtVSjtbjN Lu Y, Wang X, Liu Z, et al. Identification and distribution of thioredoxin-like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer. Proteomics, 2008, 8: 2220–2229, 18528843, 10.1002/pmic.200700770, 1:CAS:528:DC%2BD1cXotVeitb4%3D Ma Q, Geng Y, Xu W, et al. The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res, 2009, 9: 40–49, 10.1021/pr9001367, 1:CAS:528:DC%2BD1MXps1Kmsrg%3D Chi L, Lee C, Chang K, et al. Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Mol Cell Proteomics, 2009, 8: 1453–1474, 19297561, 10.1074/mcp.M800460-MCP200, 1:CAS:528:DC%2BD1MXos1GjtLc%3D Wang Z, Jiang L, Huang C, et al. Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics, 2008, 7: 1639–1650, 18458027, 10.1074/mcp.M700520-MCP200, 1:CAS:528:DC%2BD1cXhtFantL%2FL Cui J, Li W, Wang J, et al. Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. Mol Cell Proteomics, 2005, 4: 1718–1724, 16081408, 10.1074/mcp.M400165-MCP200, 1:CAS:528:DC%2BD2MXht1Cgtb%2FM Han C, Chien C, Chen W, et al. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics, 2008, 7: 1983–1997, 18490355, 10.1074/mcp.M800068-MCP200, 1:CAS:528:DC%2BD1cXht1Ols7zK Deng W, Nie S, Dai J, et al. Proteome, phosphoproteome and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics, 2009, in press Zheng J, Wei C, Leng W, et al. Membrane subproteomic analysis of Mycobacterium bovis bacillus Calmette-Guérin. Proteomics, 2007, 7: 3919–3931, 17922514, 10.1002/pmic.200700342, 1:CAS:528:DC%2BD2sXhtlOgurvO Jing H, Yuan J, Wang J, et al. Proteome analysis of Streptococcus suis serotype 2. Proteomics, 2008, 8: 333–349, 18081191, 10.1002/pmic.200600930, 1:CAS:528:DC%2BD1cXhvVSqtLc%3D Lin M, Hsu T, Lin S, et al. Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics, 2009, in press Ying W, Hao Y, Zhang Y, et al. Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. Proteomics, 2004, 4: 492–504, 14760722, 10.1002/pmic.200300676, 1:CAS:528:DC%2BD2cXhs1Ciu7s%3D Zeng R, Ruan H, Jiang X, et al. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res, 2004, 3: 549–555, 15253436, 10.1021/pr034111j, 1:CAS:528:DC%2BD2cXivVGktb0%3D Zheng X, Hong L, Shi L, et al. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics, 2008, 7: 612–625, 18056921, 1:CAS:528:DC%2BD1cXjsFygt7k%3D Liu N, Song W, Wang P, et al. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics, 2008, 8: 1851–1858, 18398875, 10.1002/pmic.200700757, 1:CAS:528:DC%2BD1cXlvFeltb0%3D Jiang X, Tang L, Dai J, et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches: Implications for cellular responses to virus infection. Mol Cell Proteomics, 2005, 4: 902–913, 15784933, 10.1074/mcp.M400112-MCP200, 1:CAS:528:DC%2BD2MXmtFKktbY%3D Wan J, Sun W, Li X, et al. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase. Proteomics, 2006, 6: 2886–2894, 16649161, 10.1002/pmic.200500638, 1:CAS:528:DC%2BD28XltF2itLc%3D Cui J, Li P, Li G, et al. AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology. Nucleic Acids Res, 2008, 36: D999–1008, 17962307, 10.1093/nar/gkm844, 1:CAS:528:DC%2BD1cXhtVSqsbs%3D Wan X, Liu J. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics, 2008, 7: 1469–1488, 18407957, 10.1074/mcp.M700488-MCP200, 1:CAS:528:DC%2BD1cXhtVSrs7vN Song X, Ni Z, Yao Y, et al. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7: 3538–3557, 17722204, 10.1002/pmic.200700147, 1:CAS:528:DC%2BD2sXht1ersrbM Li K, Xu C, Zhang K, et al. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 2007, 7: 1501–1512, 17407179, 10.1002/pmic.200600960, 1:CAS:528:DC%2BD2sXlslSqsrk%3D Zhen Y, Qi J, Wang S, et al. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant, 2007, 131: 542–554, 18251846, 10.1111/j.1399-3054.2007.00979.x, 1:CAS:528:DC%2BD2sXhsVers7fL Yin G, Sun H, Xin X, et al. Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiol, 2009, 50: 1305–1318, 19520672, 10.1093/pcp/pcp074, 1:CAS:528:DC%2BD1MXovVCitrw%3D Huang B, Chu C, Chen S, et al. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett, 2006, 11: 264–278, 16847571, 10.2478/s11658-006-0021-7, 1:CAS:528:DC%2BD28Xht1GkurzM Wang X, Fan P, Song H, et al. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res, 2009, 8: 3331–3345, 19445527, 10.1021/pr801083a, 1:CAS:528:DC%2BD1MXmvFOitLY%3D Yang Y, Bian S, Yao Y, et al. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res, 2008, 7: 4623–4637, 18823139, 10.1021/pr800550q, 1:CAS:528:DC%2BD1cXhtFOktr%2FI Li X, Li B, Gao H, et al. Proteomics approach to study the mechanism of action of grape seed proanthocyanidin extracts on arterial remodeling in diabetic rats. Int J Mol Med, 2010, 25: 237–248, 20043133 Qin G, Wang Q, Liu J, et al. Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics, 2009, 9: 4241–4253, 19688753, 10.1002/pmic.200900133, 1:CAS:528:DC%2BD1MXhtV2jt7bP Chan Z, Qin G, Xu X, et al. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res, 2007, 6: 1677–1688, 17381148, 10.1021/pr060483r, 1:CAS:528:DC%2BD2sXjtlCltL0%3D Chan Z, Wang Q, Xu X, et al. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics, 2008, 8: 4791–4807, 18924108, 10.1002/pmic.200701155, 1:CAS:528:DC%2BD1cXhsV2js7rE Pan Z, Liu Q, Yun Z, et al. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics, 2009, 9: 5455–5470, 19834898, 10.1002/pmic.200900092, 1:CAS:528:DC%2BD1MXhsF2isbrO Li J, Wu X, Hao S, et al. Proteomic response to iron deficiency in tomato root. Proteomics, 2008, 8: 2299–2311, 18452229, 10.1002/pmic.200700942, 1:CAS:528:DC%2BD1cXotVeitbg%3D Liao C, Yen J, Wang Y, et al. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate. J Hazard Mater, 2009, 163: 625–631, 1:CAS:528:DC%2BD1MXhvFaitbw%3D Yang M, Liu Y, Liu Y, et al. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res, 2009, 8: 1441–1451, 19152324, 10.1021/pr800799s, 1:CAS:528:DC%2BD1MXmvVWltg%3D%3D Wu X, Chen T, Zheng M, et al. Integrative proteomic and cytological analysis of the effects of extracellular Ca(2+) influx on Pinus bungeana pollen tube development. J Proteome Res, 2008, 7: 4299–4312, 18715029, 10.1021/pr800241u, 1:CAS:528:DC%2BD1cXhtVSrtb7P Lum J, Fung K, Cheung P, et al. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics, 2002, 2: 1123–1130, 1:CAS:528:DC%2BD38Xnsl2msb0%3D Ji X, Gai Y, Zheng C, et al. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics, 2009, 9: 5328–5339, 19834890, 10.1002/pmic.200900012, 1:CAS:528:DC%2BD1MXhsF2jurvF Wang X, Yang P, Zhang X, et al. Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics, 2009, 9: 4529–4538, 19670371, 10.1002/pmic.200900062, 1:CAS:528:DC%2BD1MXht1ansLfP Wang Y, Cheung Y, Yang Z, et al. Proteomic approach to study the cytotoxicity of dioscin (saponin). Proteomics, 2006, 6: 2422–2432, 16548062, 10.1002/pmic.200500595, 1:CAS:528:DC%2BD28XkslCgsLs%3D Chan L, Hodgkiss I, Wan J, et al. Proteomic study of a model causative agent of harmful algal blooms, Prorocentrum triestinum II: The use of differentially expressed protein profiles under different growth phases and growth conditions for bloom prediction. Proteomics, 2004, 4: 3214–3226, 15378703, 10.1002/pmic.200300838, 1:CAS:528:DC%2BD2cXovVyntL8%3D Zhao C, Zhao B, Ren Y, et al. Seeking transformation markers: an analysis of differential tissue proteomes on the rice germplasm generated from transformation of Echinochloa crusgalli genomic DNA. J Proteome Res, 2007, 6: 1354–1363, 17326673, 10.1021/pr0605015, 1:CAS:528:DC%2BD2sXitFKrur0%3D Cheng Y, Qi Y, Zhu Q, et al. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics, 2009, 9: 3100–3114, 19526560, 10.1002/pmic.200800340, 1:CAS:528:DC%2BD1MXntlGgtb4%3D Chen F, Yuan Y, Li Q, et al. Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics, 2007, 7: 1529–1539, 17407182, 10.1002/pmic.200500765, 1:CAS:528:DC%2BD2sXlslSqsrc%3D Yang P, Li X, Wang X, et al. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7: 3358–3368, 17849412, 10.1002/pmic.200700207, 1:CAS:528:DC%2BD2sXhtFGmsbnN Dai S, Chen T, Chong K, et al. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics, 2007, 6: 207–230, 17132620, 1:CAS:528:DC%2BD2sXitVOitrw%3D Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 2006, 6: 2504–2529, 16548068, 10.1002/pmic.200401351, 1:CAS:528:DC%2BD28XkslCgsb0%3D Yan S, Zhang Q, Tang Z, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 2006, 5: 484–496, 16316980, 1:CAS:528:DC%2BD28XivVWltbw%3D Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162–3172, 16078185, 10.1002/pmic.200401148, 1:CAS:528:DC%2BD2MXpsFCnsrk%3D Lin S, Chang M, Tsai Y, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5: 2140–2156, 15852341, 10.1002/pmic.200401105, 1:CAS:528:DC%2BD2MXltVSjs74%3D Yang Q, Wang Y, Zhang J, et al. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics, 2007, 7: 737–749, 17295357, 10.1002/pmic.200600703, 1:CAS:528:DC%2BD2sXjs1KlsLw%3D Wei Z, Hu W, Lin Q, et al. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach. Proteomics, 2009, 9: 2798–2808, 19405033, 10.1002/pmic.200800840, 1:CAS:528:DC%2BD1MXmtlOmtbg%3D Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 2003, 3: 527–535, 12687619, 10.1002/pmic.200390066, 1:CAS:528:DC%2BD3sXjtVais7g%3D Wang Y, Che C, Chiu J, et al. Dioscin (saponin)-induced generation of reactive oxygen species through mitochondria dysfunction: a proteomic-based study. J Proteome Res, 2007, 6: 4703–4710, 17975908, 10.1021/pr070399r, 1:CAS:528:DC%2BD2sXht1CmtrvJ Wang B, Wang H, Feng J, et al. Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics, 2006, 6: 2555–2563, 16548064, 10.1002/pmic.200500657, 1:CAS:528:DC%2BD28XkslCgsbg%3D Dai S, Wang T, Yan X, et al. Proteomics of pollen development and germination. J Proteome Res, 2007, 6: 4556–4563, 17958392, 10.1021/pr070474y, 1:CAS:528:DC%2BD2sXht1WmtLbF Qin G, Meng X, Wang Q, et al. Oxidative damage of mitochondrial proteins contributes to fruit senescence: A redox proteomics analysis. J Proteome Res, 2009, 8: 2449–2462, 19239264, 10.1021/pr801046m, 1:CAS:528:DC%2BD1MXjsFKmsrw%3D Li H, Wong W, Zhu L, et al. Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics, 2009, 9: 1646–1661, 19253305, 10.1002/pmic.200800420, 1:CAS:528:DC%2BD1MXksVKqsrg%3D Wu R, Wang W, Yu D, et al. Proteomic analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditionally home-made Koumiss in Inner Mongolia of China. Mol Cell Proteomics, 2009, 8: 2321–2338, 19508964, 10.1074/mcp.M800483-MCP200, 1:CAS:528:DC%2BD1MXht12qs7%2FK Zhou M, Zhang A, Guo Y, et al. A comprehensive proteome map of the Haemophilus parasuis serovar 5. Proteomics, 2009, 9: 2722–2739, 19405026, 10.1002/pmic.200800717, 1:CAS:528:DC%2BD1MXmtlOmt7s%3D Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA, 2007, 104: 5602–5607, 17372208, 10.1073/pnas.0609650104, 1:CAS:528:DC%2BD2sXkt1emtbk%3D Ma D, Wang Y, Yang H, et al. Anti-thrombosis Repertoire of blood-feeding horsefly salivary glands. Mol Cell Proteomics, 2009, 8: 2071–2079, 19531497, 10.1074/mcp.M900186-MCP200, 1:CAS:528:DC%2BD1MXhtFCjsL7J Yuan C, Jin Q, Tang X, et al. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res, 2007, 6: 2792–2801, 17567163, 10.1021/pr0700192, 1:CAS:528:DC%2BD2sXmtl2ltro%3D Liao Z, Cao J, Li S, et al. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics, 2007, 7: 1892–1907, 17476710, 10.1002/pmic.200600785, 1:CAS:528:DC%2BD2sXntVSisb0%3D