Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tái cấu trúc Proteoglycan Tăng tốc ở Phụ nữ bị Đau Thắt Ngực và Viêm Cơ Tim Lan Tỏa: Nghiên Cứu iPOWER
Tóm tắt
Đau thắt ngực và bệnh động mạch vành không tắc nghẽn (CAD) có tiên lượng bất lợi, có thể do xơ hóa cơ tim lan tỏa (DMF). Trong DMF, các proteoglycan biglycan và versican bị tái cấu trúc tích cực bởi matrix metalloproteinase. Chúng tôi đã nghiên cứu biglycan và versican ở phụ nữ bị đau thắt ngực và khả năng DMF được đánh giá bởi cộng hưởng từ tim (CMR). Bảy mươi một phụ nữ bị đau thắt ngực và không có CAD tắc nghẽn đã được đưa vào nghiên cứu. Các phụ nữ không có triệu chứng được sử dụng làm nhóm đối chứng. Các chỉ số versican và biglycan được đo lường và CMR được thực hiện để đo thể tích ngoại bào. Mức độ biglycan và versican cao hơn ở phụ nữ có triệu chứng so với nhóm đối chứng; 31.4 ng/mL so với 16.4 ng/mL (p < 0.001) và 2.1 ng/mL so với 1.8 ng/mL (p < 0.001) và tương quan vừa phải với thể tích ngoại bào (r2 = 0.38, p<0.001 và r2 = 0.26, p = 0.015). Sự biến đổi của biglycan và versican gia tăng ở phụ nữ bị đau thắt ngực so với nhóm đối chứng và liên quan đến thể tích ngoại bào, hỗ trợ một mối liên hệ giữa đau thắt ngực không có CAD tắc nghẽn và tái cấu trúc xơ hóa.
Từ khóa
Tài liệu tham khảo
Jespersen, L., Hvelplund, A., Abildstrøm, S. Z., Pedersen, F., Galatius, S., Madsen., J. K., et al. (2012). Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. European Heart Journal, 33(6), 734–744 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21911339.
Jespersen, L., Abildstrøm, S. Z., Hvelplund, A., & Prescott, E. (2013). Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clinical Research in Cardiology, 102(8), 571–581 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23636227.
Murthy, V. L., Naya, M., Taqueti, V. R., Foster, C. R., Gaber, M., Hainer, J., et al. (2014). Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation, 129(24), 2518–2527 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24787469.
Sicari, R., Rigo, F., Cortigiani, L., Gherardi, S., Galderisi, M., & Picano, E. (2009). Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. American Journal of Cardiology, 103(5), 626–631 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19231324.
Reis, S. E., Holubkov, R., Smith, A. J. C., Kelsey, S. F., Sharaf, B. L., Reichek, N., et al. (2001). Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. American Heart Journal, 141(5), 735–741.
Brainin, P., Frestad, D., & Prescott, E. (2018). The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: A systematic review and meta-analysis. International Journal of Cardiology, 254, 1–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29407076.
Michelsen, M. M., Pena, A., Mygind, N. D., Høst, N., Gustafsson, I., Hansen, P. R., et al. (2019). Overlap between angina without obstructive coronary artery disease and left ventricular diastolic dysfunction with preserved ejection fraction. PLoS One, 14(5), e0216240 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31120897.
Järveläinen, H., Sainio, A., Koulu, M., Wight, T. N., & Penttinen, R. (2009). Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacological Review, 61(2), 198–223 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19549927.
Schaefer, L., & Schaefer, R. M. (2010). Proteoglycans: from structural compounds to signaling molecules. Cell and Tissue Research, 339(1), 237–246 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19513755.
Schaefer, L., Babelova, A., Kiss, E., Hausser, H.-J., Baliova, M., Krzyzankova, M., et al. (2005). The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Journal of Clinical Investigation, 115(8), 2223–2233 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16025156.
Beetz, N., Rommel, C., Schnick, T., Neumann, E., Lother, A., Monroy-Ordonez, E. B., et al. (2016). Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload. Journal of Molecular and Cellular Cardiology, 101, 145–155 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27789290.
Iozzo, R. V., & Karamanos, N. (2010). Proteoglycans in health and disease: emerging concepts and future directions. FEBS Journal, 277(19), 3863 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20812984.
Kern, C. B., Wessels, A., McGarity, J., Dixon, L. J., Alston, E., Argraves, W. S., et al. (2010). Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biology, 29(4), 304–316 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20096780.
Wight, T. N. (2017). Provisional matrix: A role for versican and hyaluronan. Matrix Biology, 60–61, 38–56 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27932299.
Toeda, K., Nakamura, K., Hirohata, S., Hatipoglu, O. F., Demircan, K., Yamawaki, H., et al. (2005). Versican is induced in infiltrating monocytes in myocardial infarction. Molecular and Cellular Biochemistry, 280(1–2), 47–56 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16311904.
Farb, A., Kolodgie, F. D., Hwang, J.-Y., Burke, A. P., Tefera, K., Weber, D. K., et al. (2004). Extracellular matrix changes in stented human coronary arteries. Circulation, 110(8), 940–947 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15302784.
Evanko, S. P., Raines, E. W., Ross, R., Gold, L. I., & Wight, T. N. (1998). Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. American Journal of Pathology, 152(2), 533–546 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9466580.
Gupta, V., Barzilla, J. E., Mendez, J. S., Stephens, E. H., Lee, E. L., Collard, C. D., et al. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovascular Pathology, 18(4), 191–197 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18621549.
Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28459429.
Higgins, D. M., Ridgway, J. P., Radjenovic, A., Sivananthan, U. M., & Smith, M. A. (2005). T1 measurement using a short acquisition period for quantitative cardiac applications. Medical Physics, 32(6), 1738–1746 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16013731.
Moon, J. C., Messroghli, D. R., Kellman, P., Piechnik, S. K., Robson, M. D., Ugander, M., et al. (2013). Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. Journal of Cardiovascular Magnetic Resonance, 15(1), 92 Available from: http://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-15-92.
Bull, S., White, S. K., Piechnik, S. K., Flett, A. S., Ferreira, V. M., Loudon, M., et al. (2013). Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart, 99(13), 932–937 Available from: http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2012-303052.
Flett, A. S., Hayward, M. P., Ashworth, M. T., Hansen, M. S., Taylor, A. M., Elliott, P. M., et al. (2010). Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation., 122(2), 138–144.
Miller, C. A., Naish, J. H., Bishop, P., Coutts, G., Clark, D., Zhao, S., et al. (2013). Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circulation Cardiovascular Imaging, 6(3), 373–383.
Prescott, E., Abildstrøm, S. Z., Aziz, A., Merz, N. B., Gustafsson, I., Halcox, J., et al. (2014). Improving diagnosis and treatment of women with angina pectoris and microvascular disease: The iPOWER study design and rationale. American Heart Journal, 167(4).
Schnohr, P., Jensen, G., Nyboe, J., & Eybjaerg Hansen, A. (1977). The Copenhagen City Heart Study. A prospective cardiovascular population study of 20,000 men and women. Ugeskr Laeger, 139(32), 1921–1923 Available from: http://www.ncbi.nlm.nih.gov/pubmed/906112.
Genovese, F., Barascuk, N., Larsen, L., Larsen, M. R., Nawrocki, A., Li, Y., et al. (2013). Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. Fibrogenesis Tissue Repair, 6(1), 9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23635022.
Barascuk, N., Genovese, F., Larsen, L., Byrjalsen, I., Zheng, Q., Sun, S., et al. (2013). A MMP derived versican neo-epitope is elevated in plasma from patients with atherosclerotic heart disease. International Journal of Clinical and Experimental Medicine, 6(3), 174–184.
Mygind, N. D., Michelsen, M. M., Pena, A., Qayyum, A. A., Frestad, D., Christensen, T. E., et al. (2016). Coronary microvascular function and myocardial fibrosis in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. Journal of Cardiovascular Magnetic Resonance, 18(1).
Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2010). Statistical methods for assessment of added usefulness of new biomarkers. Clinical Chemistry and Laboratory Medicine, 48(12), 1703–1711 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20716010.
Ntusi, N. A. B., Piechnik, S. K., Francis, J. M., Ferreira, V. M., Matthews, P. M., Robson, M. D., et al. (2015). Diffuse Myocardial Fibrosis and Inflammation in Rheumatoid Arthritis: Insights From CMR T1 Mapping. JACC Cardiovascular Imaging, 8(5), 526–536 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25890584.
Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71(4), 549–574 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23649149.
Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., et al. (2000). Myocardial cell death in human diabetes. Circulation Research, 87(12), 1123–1132 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11110769.
Pardo Mindán, F. J., & Panizo, A. (1993). Alterations in the extracellular matrix of the myocardium in essential hypertension. European Heart Journal, 14(Suppl J), 12–14 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8281955.
Schwartzkopff, B., Motz, W., Frenzel, H., Vogt, M., Knauer, S., & Strauer, B. E. (1993). Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation, 88(3), 993–1003 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8353927.
Lindsey, M. L., Iyer, R. P., Zamilpa, R., Yabluchanskiy, A., DeLeon-Pennell, K. Y., Hall, M. E., et al. (2015). A Novel Collagen Matricryptin Reduces Left Ventricular Dilation Post-Myocardial Infarction by Promoting Scar Formation and Angiogenesis. Journal of the American College of Cardiology, 66(12), 1364–1374 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26383724.
Sado, D. M., Flett, A. S., Banypersad, S. M., White, S. K., Maestrini, V., Quarta, G., et al. (2012). Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart, 98(19), 1436–1441 Available from: http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2012-302346.
Liu, C. Y., Liu, Y. C., Wu, C., Armstrong, A., Volpe, G. J., Van Der Geest, R. J., et al. (2013). Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 62(14), 1280–1287.
Kawel-Boehm, N., Maceira, A., Valsangiacomo-Buechel, E. R., Vogel-Claussen, J., Turkbey, E. B., Williams, R., et al. (2015). Normal values for cardiovascular magnetic resonance in adults and children. Journal of Cardiovascular Magnetic Resonance, 17(1), 29 Available from: http://jcmr-online.com/content/17/1/29.
Nielsen, S. H., Mygind, N. D., Michelsen, M. M., Bechsgaard, D. F., Suhrs, H. E., Genovese, F., et al. (2018). Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: An iPOWER substudy. European Journal of Preventive Cardiology, 25(7).
Wong, T. C., Piehler, K., Meier, C. G., Testa, S. M., Klock, A. M., Aneizi, A. A., et al. (2012). Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation, 126(10), 1206–1216 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22851543.
Karsdal, M. A., Henriksen, K., Leeming, D. J., Woodworth, T., Vassiliadis, E., & Bay-Jensen, A.-C. (2010). Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers--are they the cause or the consequence of the disease? Clinical Biochemistry, 43(10–11), 793–804 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20381482.