Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process
Tóm tắt
Từ khóa
Tài liệu tham khảo
Williams DC, Van Frank RM, Muth WL, Burnett JP. Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science. 1982;215:687–9.
Chrunyk BA, Evans J, Lillquist J, Young P, Wetzel R. Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J Biol Chem. 1993;268:18053–61.
Carrio MM, Villaverde A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol. 2005;187:3599–601.
Carrio MM, Cubarsi R, Villaverde A. Fine architecture of bacterial inclusion bodies. FEBS Lett. 2000;471:7–11.
Marston FA. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986;240:1–12.
Taylor G, Hoare M, Gray DR, Marston FAO. Size and density of protein inclusion bodies. Nat Biotechnol. 1986;4:553–7.
Peternel S, Komel R. Active protein aggregates produced in Escherichia coli. Int J Mol Sci. 2011;12:8275–87.
Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A. 2008;105:3076–81.
Coquel AS, Jacob JP, Primet M, Demarez A, Dimiccoli M, Julou T, et al. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol. 2013;9:e1003038.
Arie JP, Miot M, Sassoon N, Betton JM. Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol Microbiol. 2006;62:427–37.
Chan W, Helms LR, Brooks I, Lee G, Ngola S, McNulty D, et al. Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold Des. 1996;1:77–89.
Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J, King J. Global suppression of protein folding defects and inclusion body formation. Science. 1991;253:54–8.
Allen SP, Polazzi JO, Gierse JK, Easton AM. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol. 1992;174:6938–47.
Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng. 2005;99:303–10.
Guenther I, Zolkiewski M, Kedzierska-Mieszkowska S. Cooperation between two ClpB isoforms enhances the recovery of the recombinant beta-galactosidase from inclusion bodies. Biochem Biophys Res Commun. 2012;426:596–600.
Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.
Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, Sourjik V, et al. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J. 2010;29:910–23.
Betts S, King J. There’s a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure. 1999;7:R131–9.
Rajan RS, Illing ME, Bence NF, Kopito RR. Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A. 2001;98:13060–5.
Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, et al. Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta. 2008;1783:1815–25.
Carrio MM, Villaverde A. Construction and deconstruction of bacterial inclusion bodies. J Biotechnol. 2002;96:3–12.
Ventura S, Villaverde A. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 2006;24:179–85.
de Groot NS, Sabate R, Ventura S. Amyloids in bacterial inclusion bodies. Trends Biochem Sci. 2009;34:408–16.
Capitini C, Conti S, Perni M, Guidi F, Cascella R, De PA, et al. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells. PLoS One. 2014;9:e86720.
Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S. Amyloid-like properties of bacterial inclusion bodies. J Mol Biol. 2005;347:1025–37.
Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R. Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol. 2008;6:e195.
Nieba L, Honegger A, Krebber C, Pluckthun A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 1997;10:435–44.
Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ. A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One. 2013;8:e54175.
Przybycien TM, Dunn JP, Valax P, Georgiou G. Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng. 1994;7:131–6.
Oberg K, Chrunyk BA, Wetzel R, Fink AL. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 1994;33:2628–34.
Curtis-Fisk J, Spencer RM, Weliky DP. Native conformation at specific residues in recombinant inclusion body protein in whole cells determined with solid-state NMR spectroscopy. J Am Chem Soc. 2008;130:12568–9.
Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, et al. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact. 2005;4:27.
Garcia-Fruitos E, Aris A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol. 2007;73:289–94.
Worrall DM, Goss NH. The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol. 1989;3:28–32.
Roessl U, Nahalka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32:341–50.
Carvajal P, Gibert J, Campos N, Lopera O, Barbera E, Torne JM, et al. Activity of maize transglutaminase overexpressed in Escherichia coli inclusion bodies: an alternative to protein refolding. Biotechnol Prog. 2011;27:232–40.
Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J. 2011;278:2408–18.
Garcia-Fruitos E, Vazquez E, Diez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, et al. Bacterial inclusion bodies: making gold from waste. Trends Biotechnol. 2012;30:65–70.
Villaverde A, Garcia-Fruitos E, Rinas U, Seras-Franzoso J, Kosoy A, Corchero JL, et al. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact. 2012;11:76.
Seras-Franzoso J, Peebo K, Luis CJ, Tsimbouri PM, Unzueta U, Rinas U, et al. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond). 2013;8:1587–99.
Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V. Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog. 2005;21:632–9.
Peternel S, Komel R. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact. 2010;9:66.
Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R. Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. 2008;7:34.
Wu W, Xing L, Zhou B, Lin Z. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact. 2011;10:9.
Zhou B, Xing L, Wu W, Zhang XE, Lin Z. Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Fact. 2012;11:10.
Huang Z, Zhang C, Chen S, Ye F, Xing XH. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact. 2013;12:25.
Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett. 2005;579:3433–6.
Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr Purif. 2000;18:182–92.
Castellanos-Mendoza A, Castro-Acosta RM, Olvera A, Zavala G, Mendoza-Vera M, Garcia-Hernandez E, et al. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Microb Cell Fact. 2014;13:137.
Upadhyay AK, Murmu A, Singh A, Panda AK. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS One. 2012;7:e33951.
Venkiteshwaran A, Heider P, Matosevic S, Bogsnes A, Staby A, Sharfstein S, et al. Optimized removal of soluble host cell proteins for the recovery of met-human growth hormone inclusion bodies from Escherichia coli cell lysate using crossflow microfiltration. Biotechnol Prog. 2007;23:667–72.
Fischer B, Perry B, Sumner I, Goodenough P. A novel sequential procedure to enhance the renaturation of recombinant protein from Escherichia coli inclusion bodies. Protein Eng. 1992;5:593–6.
Singh SM, Sharma A, Upadhyay AK, Singh A, Garg LC, Panda AK. Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form. Protein Expr Purif. 2012;81:75–82.
Khan RH, Rao KB, Eshwari AN, Totey SM, Panda AK. Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol Prog. 1998;14:722–8.
Lu SC, Lin SC. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers. Enzyme Microb Technol. 2012;50:65–70.
Upadhyay AK, Singh A, Mukherjee KJ, Panda AK. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Front Microbiol. 2014;5:486.
St John RJ, Carpenter JF, Randolph TW. High pressure fosters protein refolding from aggregates at high concentrations. Proc Natl Acad Sci U S A. 1999;96:13029–33.
Burgess RR. Purification of overproduced Escherichia coli RNA polymerase sigma factors by solubilizing inclusion bodies and refolding from Sarkosyl. Methods Enzymol. 1996;273:145–9.
Kudou M, Ejima D, Sato H, Yumioka R, Arakawa T, Tsumoto K. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein Expr Purif. 2011;77:68–74.
Lemke LS, Chura-Chambi RM, Rodrigues D, Cussiol JRR, Malavasi NV, Alegria TGP, et al. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach. Protein Expr Purif. 2015;106:72–7.
Chura-Chambi RM, Cordeiro Y, Malavasi NV, Lemke LS, Rodrigues D, Morganti L. An analysis of the factors that affect the dissociation of inclusion bodies and the refolding of endostatin under high pressure. Process Biochem. 2013;48:250–9.
Kudou M, Yumioka R, Ejima D, Arakawa T, Tsumoto K. A novel protein refolding system using lauroyl-l-glutamate as a solubilizing detergent and arginine as a folding assisting agent. Protein Expr Purif. 2011;75:46–54.
Panda AK, Sheikh MG, Eshwari AN, Garg LC. Process for solubilization of recombinant proteins expressed as inclusion body. 2007. USPTO 7189811 B2.
Buck M, Radford SE, Dobson CM. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993;32:669–78.
Perham M, Liao J, Wittung-Stafshede P. Differential effects of alcohols on conformational switchovers in alpha-helical and beta-sheet protein models. Biochemistry. 2006;45:7740–9.
Durauer A, Mayer S, Sprinzl W, Jungbauer A, Hahn R. High-throughput system for determining dissolution kinetics of inclusion bodies. Biotechnol J. 2009;4:722–9.
Tsumoto K, Ejima D, Kumagai I, Arakawa T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif. 2003;28:1–8.
Werner MH, Clore GM, Gronenborn AM, Kondoh A, Fisher RJ. Refolding proteins by gel filtration chromatography. FEBS Lett. 1994;345:125–30.
Batas B, Chaudhuri JB. Protein refolding at high concentration using size-exclusion chromatography. Biotechnol Bioeng. 1996;50:16–23.
Schlegl R, Iberer G, Machold C, Necina R, Jungbauer A. Continuous matrix-assisted refolding of proteins. J Chromatogr A. 2003;1009:119–32.
Gu Z, Weidenhaupt M, Ivanova N, Pavlov M, Xu B, Su ZG, et al. Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Protein Expr Purif. 2002;25:174–9.
Lanckriet H, Middelberg AP. Continuous chromatographic protein refolding. J Chromatogr A. 2004;1022:103–13.
Creighton TE. Folding of proteins adsorbed reversibly to ion-exchange resins. In: Oxender DL, editor. UCLA Symposia on Molecular and Cellular Biology, New Series. Volume 39. New York: Alan R. Liss; 1986. p. 249–57.
Suttnar J, Dyr JE, Hamsikova E, Novak J, Vonka V. Procedure for refolding and purification of recombinant proteins from Escherichia coli inclusion bodies using a strong anion exchanger. J Chromatogr B Biomed Appl. 1994;656:123–6.
Li M, Zhang G, Su Z. Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. J Chromatogr A. 2002;959:113–20.
Kweon DH, Lee DH, Han NS, Seo JH. Solid-phase refolding of cyclodextrin glycosyltransferase adsorbed on cation-exchange resin. Biotechnol Prog. 2004;20:277–83.
Glynou K, Ioannou PC, Christopoulos TK. One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expr Purif. 2003;27:384–90.
Yin SM, Zheng Y, Tien P. On-column purification and refolding of recombinant bovine prion protein: using its octarepeat sequences as a natural affinity tag. Protein Expr Purif. 2003;32:104–9.
Zahn R, von SC, Wuthrich K. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett. 1997;417:400–4.
Geng X, Chang X. High-performance hydrophobic interaction chromatography as a tool for protein refolding. J Chromatogr A. 1992;599:185–94.
Ling M, Xu X, Shi F, Zhu Y, Long N. Refolding of recombinant human interleukin-2 by reverse phase high performance liquid chromatography. Chin J Biotechnol. 1997;13:180–3.
Jungbauer A, Kaar W, Schlegl R. Folding and refolding of proteins in chromatographic beds. Curr Opin Biotechnol. 2004;15:487–94.
Li M, Su ZG, Janson JC. In vitro protein refolding by chromatographic procedures. Protein Expr Purif. 2004;33:1–10.
Tsumoto K, Umetsu M, Yamada H, Ito T, Misawa S, Kumagai I. Immobilized oxidoreductase as an additive for refolding inclusion bodies: application to antibody fragments. Protein Eng. 2003;16:535–41.
Altamirano MM, Golbik R, Zahn R, Buckle AM, Fersht AR. Refolding chromatography with immobilized mini-chaperones. Proc Natl Acad Sci U S A. 1997;94:3576–8.
Dong XY, Yang H, Sun Y. Lysozyme refolding with immobilized GroEL column chromatography. J Chromatogr A. 2000;878:197–204.
Dong XY, Yang H, Gan YR, Bai S, Sun Y. [Reactivation of denatured lysozyme with immobilized molecular chaperones GroE]. Sheng Wu Gong Cheng Xue Bao. 2000;16:169–72.
Altamirano MM, Garcia C, Possani LD, Fersht AR. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat Biotechnol. 1999;17:187–91.
Chen Y, Susana SJL. High productivity refolding of an inclusion body protein using pulsed-fed size exclusion chromatography. Process Biochem. 2010;45:1570–6.
Chen Y, Leong SS. Adsorptive refolding of a highly disulfide-bonded inclusion body protein using anion-exchange chromatography. J Chromatogr A. 2009;1216:4877–86.
Yamaguchi H, Miyazaki M, Briones-Nagata MP, Maeda H. Refolding of difficult-to-fold proteins by a gradual decrease of denaturant using microfluidic chips. J Biochem. 2010;147:895–903.
Okada J, Maruyama T, Motomura K, Kuroki K, Maenaka K, Sakono M, et al. Enzyme-mediated protein refolding. Chem Commun (Camb). 2009;46:7197–9.
Ou WB, Park YD, Zhou HM. Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int J Biochem Cell Biol. 2002;34:136–47.
Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y). 1991;9:157–62.
Xia Y, Park YD, Mu H, Zhou HM, Wang XY, Meng FG. The protective effects of osmolytes on arginine kinase unfolding and aggregation. Int J Biol Macromol. 2007;40:437–43.
Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, et al. Proline inhibits aggregation during protein refolding. Protein Sci. 2000;9:344–52.
Kim SH, Yan YB, Zhou HM. Role of osmolytes as chemical chaperones during the refolding of aminoacylase. Biochem Cell Biol. 2006;84:30–8.
Cleland JL, Wang DI. Cosolvent assisted protein refolding. Biotechnology (N Y). 1990;8:1274–8.
Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY, Wang DI. Polyethylene glycol enhanced protein refolding. Biotechnology (N Y). 1992;10:1013–9.
Wang F, Liu Y, Li J, Ma G, Su Z. On-column refolding of consensus interferon at high concentration with guanidine-hydrochloride and polyethylene glycol gradients. J Chromatogr A. 2006;1115:72–80.
Rahimpour F, Mamo G, Feyzi F, Maghsoudi S, Hatti-Kaul R. Optimizing refolding and recovery of active recombinant Bacillus halodurans xylanase in polymer-salt aqueous two-phase system using surface response analysis. J Chromatogr A. 2007;1141:32–40.
Sawano H, Koumoto Y, Ohta K, Sasaki Y, Segawa S, Tachibana H. Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett. 1992;303:11–4.
Majumder A, Basak S, Raha T, Chowdhury SP, Chattopadhyay D, Roy S. Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of Chandipura virus. J Biol Chem. 2001;276:30948–55.
Vallejo LF, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng. 2004;85:601–9.
Goldberg ME, Expert-Bezancon N, Vuillard L, Rabilloud T. Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation. Fold Des. 1995;1:21–7.
Vicik SM. Methods of refolding proteins by use of zwitterionic low molecular weight agents. 1999. WO 99/18196.
Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol. 2002;94:185–94.
Shinde U, Inouye M. Intramolecular chaperones and protein folding. Trends Biochem Sci. 1993;18:442–6.
Zhu XL, Ohta Y, Jordan F, Inouye M. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature. 1989;339:483–4.
Beer HD, Wohlfahrt G, Schmid RD, McCarthy JE. The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J. 1996;319(Pt 2):351–9.
Tang B, Nirasawa S, Kitaoka M, Marie-Claire C, Hayashi K. General function of N-terminal propeptide on assisting protein folding and inhibiting catalytic activity based on observations with a chimeric thermolysin-like protease. Biochem Biophys Res Commun. 2003;301:1093–8.
Rozema D, Gellman SH. Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. J Am Chem Soc. 1995;117:2373–4.
Nath D, Rao M. Artificial chaperone mediated refolding of xylanase from an alkalophilic thermophilic Bacillus sp. Implications for in vitro protein renaturation via a folding intermediate. Eur J Biochem. 2001;268:5471–8.
Kuboi R, Morita S, Ota H, Umakoshi H. Protein refolding using stimuli-responsive polymer-modified aqueous two-phase systems. J Chromatogr B Biomed Sci Appl. 2000;743:215–23.
Mondal K, Bohidar HB, Roy RP, Gupta MN. Alginate-chaperoned facile refolding of Chromobacterium viscosum lipase. Biochim Biophys Acta. 2006;1764:877–86.
Huang Z, Leong SS. Molecular-assisted refolding: study of two different ionic forms of recombinant human fibroblast growth factors. J Biotechnol. 2009;142:157–63.
Chen YJ, Huang LW, Chiu HC, Lin SC. Temperature-responsive polymer-assisted protein refolding. Enzyme Microb Technol. 2003;32:120–30.