Tác Dụng Bảo Vệ của Châm Cứu Điện Đối Với Các Bao Myelin Thần Kinh được Tăng Cường Qua Việc Thúc Đẩy Sự Tăng Sinh của Tế Bào Oligodendrocyte và Ức Chế Tử Vong của Tế Bào Oligodendrocyte Sau Chấn Thương Tủy Sống Bị Ép

Siqin Huang1,2, Chenglin Tang1, Shanquan Sun2, Wenfu Cao1, Wei Qi3, Jin Xu2, Juan Huang2, Weitian Lu2, Qian Liu2, Biao Gong1, Yi Zhang1, Jin Jiang2
1Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
2Institute of Neuroscience, Chongqing Medical University, Chongqing, China
3Chongqing Three Gorgers Central Hospital, Chongqing, China

Tóm tắt

Châm cứu điện (EA) đã được sử dụng trên toàn thế giới để điều trị các bệnh thoái hóa myelin, nhưng cơ chế điều trị của nó vẫn chưa được hiểu rõ. Trong nghiên cứu này, một mô hình thiết kế đặc biệt của chấn thương tủy sống bị ép (CSCI) đã được sử dụng để gây ra tình trạng mất myelin. Điểm châm Zusanli (ST36) và Taixi (KI3) ở chuột lớn đã được kích thích bằng EA để chứng minh tác dụng bảo vệ của nó. Sau 14 ngày điều trị bằng EA, cả kỹ năng vận động và các đặc điểm siêu cấu trúc của bao myelin đã được cải thiện đáng kể. Các kiểu hình của các tế bào đang sinh sản đã được xác định thông qua việc nhuộm miễn dịch kép 5-ethynyl-2′-deoxyuridine với kháng thể chống lại các dấu hiệu tế bào: NG2 (dấu hiệu tế bào tiền thân oligodendrocyte), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) (dấu hiệu tế bào oligodendrocyte) và glial fibrillary acidic protein (GFAP) (dấu hiệu tế bào astrosito). EA đã tăng cường sự sinh sản của OPCs và CNPase, cũng như sự phân hóa của OPCs bằng cách thúc đẩy Olig2 (protein cơ bản hình vòng xoắn) và làm giảm Id2 (chất ức chế sự gắn kết DNA 2). EA cũng có thể cải thiện protein myelin cơ bản (MBP) và bảo vệ các oligodendrocyte hiện có khỏi tình trạng apoptosis bằng cách ức chế caspase-12 (một đại diện của căng thẳng lưới nội bào) và cytochrome c (một yếu tố gây apoptosis và dấu hiệu của ty thể). Do đó, kết quả của chúng tôi cho thấy tác dụng bảo vệ của EA đối với các bao myelin thần kinh là do việc thúc đẩy sự tăng sinh của oligodendrocyte và ức chế sự chết của oligodendrocyte sau CSCI.

Từ khóa

#châm cứu điện #myelin #oligodendrocyte #chấn thương tủy sống bị ép #tế bào tiền thân oligodendrocyte

Tài liệu tham khảo

Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26

Totoiu MO, Keirstead HS (2005) Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 486(4):373–383

Huang SQ, Tang CL, Sun SQ, Yang C, Xu J, Wang KJ, Lu WT, Huang J, Zhuo F, Qiu GP, Wu XY, Qi W (2014) Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 20(1):20–31. doi:10.1111/cns.12155

Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS (2009) Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci 10:35. doi:10.1186/1471-2202-10-35

Liu YM, Liu XJ, Bai SS, Mu LL, Kong QF, Sun B, Wang DD, Wang JH, Shu S, Wang GY, Li HL (2010) The effect of electroacupuncture on T cell responses in rats with experimental autoimmune encephalitis. J Neuroimmunol 220(1–2):25–33. doi:10.1016/j.jneuroim.2009.12.005

Yan Q, Ruan JW, Ding Y, Li WJ, Li Y, Zeng YS (2011) Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxicol Pathol 63(1–2):151–156. doi:10.1016/j.etp.2009.11.002

Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203

Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22(2):161–170

McTigue DM, Wei P, Stokes BT (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21(10):3392–3400

Zai LJ, Wrathall JR (2005) Cell proliferation and replacement following contusive spinal cord injury. Glia 50(3):247–257. doi:10.1002/glia.20176

Sun T, Hafler BP, Kaing S, Kitada M, Ligon KL, Widlund HR, Yuk DI, Stiles CD, Rowitch DH (2006) Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube. Dev Biol 292(1):152–164. doi:10.1016/j.ydbio.2005.12.047

Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27(3):247–254. doi:10.1016/j.mcn.2004.06.015

Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Gotz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102(50):18183–18188. doi:10.1073/pnas.0506535102

Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86

Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31(5):791–807

Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12(13):1157–1163

Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565

Chen X-S, Zhou D-S, Yao Z-X (2007) The inhibitor of DNA binding 2 is mainly expressed in oligodendrocyte lineage cells in adult rat brain. Neurosci Lett 428(2):93–98

Kondo T, Raff M (2000) Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127(14):2989–2998

Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139(2):244–256

Yu Y, Arora A, Min W, Roifman CM, Grunebaum E (2009) EdU incorporation is an alternative non-radioactive assay to [(3)H]thymidine uptake for in vitro measurement of mice T-cell proliferations. J Immunol Methods 350(1–2):29–35. doi:10.1016/j.jim.2009.07.008

Chehrehasa F, Meedeniya AC, Dwyer P, Abrahamsen G, Mackay-Sim A (2009) EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods 177(1):122–130. doi:10.1016/j.jneumeth.2008.10.006

D’Aversa TG, Eugenin EA, Lopez L, Berman JW (2013) Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 39(3):270–283. doi:10.1111/j.1365-2990.2012.01279.x

Boggs JM, Rangaraj G, Heng Y-M, Liu Y, Harauz G (2011) Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: effect of phosphorylation and deimination. Biochim Biophys Acta 1808(3):761

Bruck W, Kuhlmann T, Stadelmann C (2003) Remyelination in multiple sclerosis. J Neurol Sci 206(2):181–185

McDonald JW, Belegu V (2006) Demyelination and remyelination after spinal cord injury. J Neurotrauma 23(3–4):345–359. doi:10.1089/neu.2006.23.345

Hu L, Chu NN, Sun LL, Zhang R, Han JS, Cui CL (2009) Electroacupuncture treatment reverses morphine-induced physiological changes in dopaminergic neurons within the ventral tegmental area. Addict Biol 14(4):431–437. doi:10.1111/j.1369-1600.2009.00163.x

Huang SF, Ding Y, Ruan JW, Zhang W, Wu JL, He B, Zhang YJ, Li Y, Zeng YS (2011) An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res 70(3):294–304. doi:10.1016/j.neures.2011.03.010

Ho CY, Lin HC, Lee YC, Chou LW, Kuo TW, Chang HW, Chen YS, Lo SF (2014) Clinical effectiveness of acupuncture for carpal tunnel syndrome. Am J Chin Med 42(2):303–314. doi:10.1142/s0192415x14500207

Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20(6):2218–2228

Li Q, Brus-Ramer M, Martin JH, McDonald JW (2010) Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 479(2):128–133. doi:10.1016/j.neulet.2010.05.043

Becker D, Gary DS, Rosenzweig ES, Grill WM, McDonald JW (2010) Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats. Exp Neurol 222(2):211–218. doi:10.1016/j.expneurol.2009.12.029

Sizonenko SV, Camm EJ, Dayer A, Kiss JZ (2008) Glial responses to neonatal hypoxic-ischemic injury in the rat cerebral cortex. Int J Dev Neurosci 26(1):37–45. doi:10.1016/j.ijdevneu.2007.08.014

Watanabe M, Toyama Y, Nishiyama A (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69(6):826–836. doi:10.1002/jnr.10338

Ludwin SK (1984) Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308(5956):274–275

Wood PM, Bunge RP (1991) The origin of remyelinating cells in the adult central nervous system: the role of the mature oligodendrocyte. Glia 4(2):225–232. doi:10.1002/glia.440040214

Nguyen KB, Pender MP (1999) Survival and mitosis of myelinating oligodendrocytes in experimental autoimmune encephalomyelitis: an immunocytochemical study with Rip antibody. Acta Neuropathol 98(1):39–47

Piaton G, Gould RM, Lubetzki C (2010) Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 114(5):1243–1260. doi:10.1111/j.1471-4159.2010.06831.x

Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39(1):13–25

Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25(2):317–329

Cai J, Chen Y, Cai WH, Hurlock EC, Wu H, Kernie SG, Parada LF, Lu QR (2007) A crucial role for Olig2 in white matter astrocyte development. Development 134(10):1887–1899. doi:10.1242/dev.02847

Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF (2005) Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 25(36):8311–8321. doi:10.1523/jneurosci. 1850-05.2005

Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13(8):410–418

Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113(Pt 22):3897–3905

Chen XS, Zhou DS, Yao ZX (2007) The inhibitor of DNA binding 2 is mainly expressed in oligodendrocyte lineage cells in adult rat brain. Neurosci Lett 428(2–3):93–98. doi:10.1016/j.neulet.2007.09.044

Sun Y, Xu CC, Li J, Guan XY, Gao L, Ma LX, Li RX, Peng YW, Zhu GP (2013) Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury. PLoS One 8(2):e57534. doi:10.1371/journal.pone.0057534

Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289(5485):1754–1757

Feng X, Yang S, Liu J, Huang J, Peng J, Lin J, Tao J, Chen L (2013) Electroacupuncture ameliorates cognitive impairment through inhibition of NF-kappaB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats. Mol Med Rep 7(5):1516–1522. doi:10.3892/mmr.2013.1392

Wang F, Gao Z, Li X, Li Y, Zhong H, Xu N, Cao F, Wang Q, Xiong L (2013) NDRG2 is involved in anti-apoptosis induced by electroacupuncture pretreatment after focal cerebral ischemia in rats. Neurol Res 35(4):406–414. doi:10.1179/1743132813y.0000000159

Feng S, Wang Q, Wang H, Peng Y, Wang L, Lu Y, Shi T, Xiong L (2010) Electroacupuncture pretreatment ameliorates hypergravity-induced impairment of learning and memory and apoptosis of hippocampal neurons in rats. Neurosci Lett 478(3):150–155. doi:10.1016/j.neulet.2010.05.006

Wang Q, Li X, Chen Y, Wang F, Yang Q, Chen S, Min Y, Xiong L (2011) Activation of epsilon protein kinase C-mediated anti-apoptosis is involved in rapid tolerance induced by electroacupuncture pretreatment through cannabinoid receptor type 1. Stroke 42(2):389–396. doi:10.1161/strokeaha.110.597336

Zhu Y, Zeng Y (2011) Electroacupuncture protected pyramidal cells in hippocampal CA1 region of vascular dementia rats by inhibiting the expression of p53 and Noxa. CNS Neurosci Ther 17(6):599–604. doi:10.1111/j.1755-5949.2010.00192.x

Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277(37):34287–34294. doi:10.1074/jbc.M204973200

Bologa L, Bisconte JC, Joubert R, Margules S, Herschkowitz N (1983) Proliferative activity and characteristics of immunocytochemically identified oligodendrocytes in embryonic mouse brain cell cultures. Exp Brain Res 50(1):84–90

Rhodes KE, Raivich G, Fawcett JW (2006) The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140(1):87–100. doi:10.1016/j.neuroscience.2006.01.055

Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7(4):470–482. doi:10.1016/j.stem.2010.07.014

Johnston TE, Smith BT, Oladeji O, Betz RR, Lauer RT (2008) Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series. J Spinal Cord Med 31(2):215–221

Szecsi J, Schiller M, Straube A, Gerling D (2009) A comparison of functional electrical and magnetic stimulation for propelled cycling of paretic patients. Arch Phys Med Rehabil 90(4):564–570. doi:10.1016/j.apmr.2008.09.572