Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol‐dependent manner

Journal of extracellular vesicles - Tập 10 Số 2 - 2020
Stephen E. Henrich1,2, Kaylin M. McMahon1,2, Michael P. Plebanek1,2, Andrea E. Calvert1,2, Timothy Joel Feliciano1,2, Samuel K. Parrish1, Fabio Tavora3, Anthony Mega4,5, André De Souza4,5, Benedito A. Carneiro4,5, C. Shad Thaxton1,6,2
1Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
2Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
3Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
4Lifespan Cancer Institute, Providence, Rhode Island, USA
5Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
6Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA

Tóm tắt

Abstract

Primary tumours can establish long‐range communication with distant organs to transform them into fertile soil for circulating tumour cells to implant and proliferate, a process called pre‐metastatic niche (PMN) formation. Tumour‐derived extracellular vesicles (EV) are potent mediators of PMN formation due to their diverse complement of pro‐malignant molecular cargo and their propensity to target specific cell types (Costa‐Silva et al., 2015; Hoshino et al., 2015; Peinado et al., 2012; Peinado et al., 2017). While significant progress has been made to understand the mechanisms by which pro‐metastatic EVs create tumour‐favouring microenvironments at pre‐metastatic organ sites, comparatively little attention has been paid to the factors intrinsic to recipient cells that may modify the extent to which pro‐metastatic EV signalling is received and transduced. Here, we investigated the role of recipient cell cholesterol homeostasis in prostate cancer (PCa) EV‐mediated signalling and metastasis. Using a bone metastatic model of enzalutamide‐resistant PCa, we first characterized an axis of EV‐mediated communication between PCa cells and bone marrow that is marked by in vitro and in vivo PCa EV uptake by bone marrow myeloid cells, activation of NF‐κB signalling, enhanced osteoclast differentiation, and reduced myeloid thrombospondin‐1 expression. We then employed a targeted, biomimetic approach to reduce myeloid cell cholesterol in vitro and in vivo prior to conditioning with PCa EVs. Reducing myeloid cell cholesterol prevented the uptake of PCa EVs by recipient myeloid cells, abolished NF‐κB activity and osteoclast differentiation, stabilized thrombospondin‐1 expression, and reduced metastatic burden by 77%. These results demonstrate that cholesterol homeostasis in bone marrow myeloid cells regulates pro‐metastatic EV signalling and metastasis by acting as a gatekeeper for EV signal transduction.

Từ khóa


Tài liệu tham khảo

10.1158/0008-5472.CAN-16-2738

10.1158/1078-0432.CCR-07-5125

10.1038/emboj.2010.175

Bidard F. C., 2007, Bone marrow micrometastasis and circulating tumor cells are respectively strong prognostic factors in early and metastatic breast cancer, a comparative study on 759 patients, Breast Cancer Research and Treatment, 106, S26

10.1053/hp.2000.6698

Catena R., 2013, Bone marrow‐derived Gr1(+) cells can generate a metastasis‐resistant microenvironment via induced secretion of thrombospondin‐1, Cancer Discovery, 3, 578, 10.1158/2159-8290.CD-12-0476

10.1038/srep05750

10.1007/978-1-61779-415-5_13

10.1038/ncb3169

10.1084/jem.20190158

10.1016/j.jmb.2004.10.064

10.4049/jimmunol.1100253

10.1038/onc.2017.247

10.1158/0008-5472.CAN-11-2905

10.1080/14737140.2019.1624529

10.1016/j.ajur.2016.09.001

10.1021/bi201356v

10.1038/nature15756

10.1158/1055-9965.EPI-07-0448

10.1002/jbmr.1822

Jiang S., 2019, Cholesterol induces epithelial‐to‐mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP, Cancer Research, 79, 3063, 10.1158/0008-5472.CAN-18-3295

10.1016/j.ccr.2011.12.026

10.1002/jcb.10662

10.18632/oncotarget.8456

10.1016/S1937-6448(10)82003-9

10.1016/j.ccell.2016.09.011

10.1016/j.semcdb.2017.01.004

10.1007/978-90-481-8622-8_7

10.1016/j.tcb.2016.11.003

10.1371/journal.pone.0011162

10.1007/s10552-009-9434-8

Murphy‐Ullrich J. E., 1989, Thrombospondin modulates focal adhesions in endothelial cells, Journal of Cell Biology, 109, 1309, 10.1083/jcb.109.3.1309

Murphy‐Ullrich J. E., 1991, Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin, Journal of Cell Biology, 115, 1127

10.1007/978-90-481-8622-8_16

Pantel K., 2010, Bone marrow micrometastasis and circulating tumor cells in cancer patients, Tumor Biology, 31, S2

10.1038/nm.2753

10.1038/nrc.2017.6

10.1002/ijc.23715

10.1158/1055-9965.EPI-09-0472

10.1038/s41467-017-01433-3

10.1158/1535-7163.MCT-17-0981

10.1038/srep15724

10.1021/acsami.7b18525

10.1371/journal.pone.0003627

10.1615/CritRevEukarGeneExpr.v19.i2.20

10.1038/ncomms2221

10.1038/bonekey.2015.57

10.1172/JCI0216390

10.1016/S0140-6736(11)61226-9

10.2174/1566524011313040012

10.1111/tra.12586

10.1074/jbc.M112.445403

10.1074/jbc.M115.677427

10.1080/20013078.2018.1535750

10.1371/journal.pone.0014175

10.1007/s10552-011-9774-z

10.3389/fendo.2018.00694

Weidle U. H., 2016, Molecular mechanisms of bone metastasis, Cancer Genomics & Proteomics, 13, 1

10.1073/pnas.1213657110

10.4049/jimmunol.178.11.6867

10.1101/sqb.2016.81.030775