Prospects of quantum computing for molecular sciences
Tóm tắt
Molecular science is governed by the dynamics of electrons and atomic nuclei, and by their interactions with electromagnetic fields. A faithful physicochemical understanding of these processes is crucial for the design and synthesis of chemicals and materials of value for our society and economy. Although some problems in this field can be adequately addressed by classical mechanics, many demand an explicit quantum mechanical description. Such quantum problems require a representation of wave functions that grows exponentially with system size and therefore should naturally benefit from quantum computation on a number of logical qubits that scales only linearly with system size. In this perspective, we elaborate on the potential benefits of quantum computing in the molecular sciences, i.e., in molecular physics, chemistry, biochemistry, and materials science.
Từ khóa
Tài liệu tham khảo
D. S. Abrams, S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett.83(24), 5162 (1999).
K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem.94(14), 5483–5488 (1990).
C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J. -P. Malrieu, Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys.114(23), 10252–10264 (2001).
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., Quantum supremacy using a programmable superconducting processor. Nature. 574(7779), 505–510 (2019).
A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies. Science. 309(5741), 1704–1707 (2005).
A. Baiardi, M. Reiher, The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys.152(4), 040903 (2020).
A. Baiardi, C. J. Stein, V. Barone, M. Reiher, Vibrational density matrix renormalization group. J. Chem. Theory Comput.13(8), 3764–3777 (2017).
V. Barone, Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys.122(1), 014108 (2005).
R. J. Bartlett, M. Musiał, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys.79(1), 291 (2007).
B. Bauer, S. Bravyi, M. Motta, G. Kin-Lic Chan, Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev.120(22), 12685–12717 (2020).
N. P. Bauman, H. Liu, E. J. Bylaska, S. Krishnamoorthy, G. H. Low, C. E. Granade, N. Wiebe, N. A. Baker, B. Peng, M. Roetteler, et al., Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States. J. Chem. Theory Comput. (2020).
M. H. Beck, A. Jäckle, G. A. Worth, H. -D Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep.324(1), 1–105 (2000).
M. Ben-Nun, J. Quenneville, T. J. Martínez, Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A. 104(22), 5161–5175 (2000).
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. -K. Mok, S. Sim, L. -C. Kwek, A Aspuru-Guzik, Noisy intermediate-scale quantum (NISQ) algorithms. arXiv preprint arXiv:2101.08448 (2021).
K. Bharti, T. Haug, V. Vedral, L. -C. Kwek, Machine learning meets quantum foundations: A brief survey. AVS Quantum Sci.2(3), 034101 (2020).
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning. Nature. 549(7671), 195–202 (2017).
L. Bittel, M Kliesch, Training variational quantum algorithms is NP-hard–even for logarithmically many qubits and free fermionic systems. arXiv preprint arXiv:2101.07267 (2021).
G. H. Booth, A. J. Thom, A. Alavi, Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space. J. Chem. Phys.131(5), 054106 (2009).
J. M. Bowman, Self-consistent field energies and wavefunctions for coupled oscillators. J. Chem. Phys.68(2), 608–610 (1978).
J. M. Bowman, K. Christoffel, F. Tobin, Application of SCF-SI theory to vibrational motion in polyatomic molecules. J. Phys. Chem.83(8), 905–912 (1979).
R. J. Buenker, S. D. Peyerimhoff, Individualized configuration selection in CI calculations with subsequent energy extrapolation. Theoretica Chimica Acta. 35(1), 33–58 (1974a).
R. J. Buenker, S. D. Peyerimhoff, Energy extrapolation in CI calculations. Theoretica Chimica Acta. 39(3), 217–228 (1975b).
G. Bussi, A. Laio, Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys.2(4), 200–212 (2020).
Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya, et al., Quantum chemistry in the age of quantum computing. Chem. Rev.119(19), 10856–10915 (2019).
G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science. 355(6325), 602–606 (2017).
Y. Chen, L. Zhang, H. Wang, W E, DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory. J. Chem. Theory Comput. (2020a).
L. Cheng, M. Welborn, A. S. Christensen, T. F. Miller III, A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules. J. Chem. Phys.150(13), 131103 (2019).
Y. Chen, L. Zhang, H. Wang, W E, Ground State Energy Functional with Hartree–Fock Efficiency and Chemical Accuracy. J. Phys. Chem. A. 124(35), 7155–7165 (2020b).
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. A. Spielman, in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. Exponential algorithmic speedup by a quantum walk (Association for Computing MachineryNew York, 2003), pp. 59–68. https://doi.org/10.1145/780542.780552.
O. Christiansen, H. Koch, P. Jorgensen, Response functions in the CC3 iterative triple excitation model. J. Chem. Phys.103(17), 7429–7441 (1995).
E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys.17(1), 87–94 (1975). https://doi.org/10.1016/0021-9991(75)90065-0, https://www.sciencedirect.com/science/article/pii/0021999175900650
D. M. Deaven, K. -M. Ho, Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett.75(2), 288 (1995).
S. Dick, M Fernandez-Serra, Machine learning accurate exchange and correlation functionals of the electronic density. Nat. Commun.11(1), 1–10 (2020).
P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal, M. J. McConnell, G. Sapiro, A. Aspuru-Guzik, J. T. Baker, M. Bastiani, et al., Quantum computing at the frontiers of biological sciences. Nat. Methods, 1–9 (2021).
J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R. Hoffmann, S. Lee, D. S. Levine, I. Magoulas, J. Shen, et al., The ground state electronic energy of benzene. J. Phys. Chem. Lett.11(20), 8922–8929 (2020).
F. A. Evangelista, G. K. -L. Chan, G. E. Scuseria, Exact parameterization of fermionic wave functions via unitary coupled cluster theory. J. Chem. Phys.151(24), 244112 (2019).
I. Fdez. Galván, et al., OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput.15(11), 5925–5964 (2019). PMID: 31509407.
W. Foulkes, L. Mitas, R. Needs, G. Rajagopal, Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33 (2001).
J. Gasteiger, Chemoinformatics: Achievements and challenges, a personal view. Molecules. 21(2), 151 (2016).
K. Ghanem, A. Y. Lozovoi, A. Alavi, Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo. J. Chem. Phys.151(22), 224108 (2019).
D. Ghosh, J. Hachmann, T. Yanai, G. K. -L. Chan, Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene. J. Chem. Phys.128(14), 144117 (2008).
L. González, R. Lindh, Quantum Chemistry and Dynamics of Excited States: Methods and Applications (Wiley, 2020).
Google AI Quantum, et al., Hartree-Fock on a superconducting qubit quantum computer. Science. 369(6507), 1084–1089 (2020).
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett.79(2), 325 (1997).
T. Häner, T. Hoefler, M. Troyer, Assertion-based optimization of quantum programs. Proc. ACM Program. Lang.4(OOPSLA), 1–20 (2020).
A. W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Phys. Rev. Lett.103(15), 150502 (2009).
M. Hartenfeller, G Schneider, De novo drug design. Chemoinformatics Comput. Chem. Biol., 299–323 (2010).
J. Hermann, Z. Schätzle, F Noé, Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem.12(10), 891–897 (2020).
O. Higgott, D. Wang, S. Brierley, Variational quantum computation of excited states. Quantum. 3:, 156 (2019).
S. P. Jordan, Quantum Algorithm Zoo (2021). https://quantumalgorithmzoo.org/. Accessed 1 Feb 2021.
Jordan, S. P., Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett.95(5), 050501 (2005).
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 549(7671), 242–246 (2017).
I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, A. Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci.105(48), 18681–18686 (2008).
Y. Kawashima, M. P. Coons, Y. Nam, E. Lloyd, S. Matsuura, A. J. Garza, S. Johri, L. Huntington, V. Senicourt, A. O. Maksymov, et al., Efficient and Accurate Electronic Structure Simulation Demonstrated on a Trapped-Ion Quantum Computer. arXiv preprint arXiv:2102.07045 (2021).
W. Kohn, A. D. Becke, R. G. Parr, Density functional theory of electronic structure. J. Phys. Chem.100(31), 12974–12980 (1996).
W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev.140(4A), A1133 (1965).
M. Kühn, S. Zanker, P. Deglmann, M. Marthaler, H. Weiß, Accuracy and resource estimations for quantum chemistry on a near-term quantum computer. J. Chem. Theory Comput.15(9), 4764–4780 (2019).
Y. Kurashige, T. Yanai, Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer. J. Chem. Phys.135(9), 094104 (2011).
C. Lanczos, Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand.49(1), 33–53 (1952).
S. R. Langhoff, E. R. Davidson, Configuration interaction calculations on the nitrogen molecule. Int. J. Quantum Chem.8(1), 61–72 (1974).
A. D. Laurent, D. Jacquemin, TD-DFT benchmarks: a review. Int. J. Quantum Chem.113(17), 2019–2039 (2013).
J. Lee, D. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, R Babbush, Even more efficient quantum computations of chemistry through tensor hypercontraction. arXiv preprint arXiv:2011.03494 (2020).
J. Lemieux, B. Heim, D. Poulin, K. Svore, M. Troyer, Efficient Quantum Walk Circuits for Metropolis-Hastings Algorithm. Quantum. 4:, 287 (2020).
G. Li Manni, S. D. Smart, A. Alavi, Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins. J. Chem. Theory Comput.12(3), 1245–1258 (2016).
X. Lu, D. Fang, S. Ito, Y. Okamoto, V. Ovchinnikov, Q. Cui, QM/MM free energy simulations: Recent progress and challenges. Mol. Simul.42(13), 1056–1078 (2016).
U. Manthe, A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys.128(16), 164116 (2008).
T. Martinez, M. Ben-Nun, R. Levine, Molecular collision dynamics on several electronic states. J. Phys. Chem. A. 101(36), 6389–6402 (1997).
J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, H. Neven, Barren plateaus in quantum neural network training landscapes. Nat. Commun.9(1), 1–6 (2018).
J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, W. A. De Jong, Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A. 95(04), 2308 (2017).
J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms. New J. Phys.18(2), 023023 (2016).
H. -D. Meyer, U. Manthe, L. S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett.165(1), 73–78 (1990).
M. Motta, D. M. Ceperley, G. K. -L. Chan, J. A. Gomez, E. Gull, S. Guo, C. A. Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, et al., Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods. Phys. Rev. X. 7(03), 1059 (2017).
K. C. Mundim, C. Tsallis, Geometry optimization and conformational analysis through generalized simulated annealing. Int. J. Quantum Chem.58(4), 373–381 (1996).
Y. Nam, J. -S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, et al., Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. NPJ Quantum Inf.6(1), 1–6 (2020).
M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667.
T. E. O’Brien, B. Senjean, R. Sagastizabal, X. Bonet-Monroig, A. Dutkiewicz, F. Buda, L. DiCarlo, L. Visscher, Calculating energy derivatives for quantum chemistry on a quantum computer. NPJ Quantum Inf.5(1), 1–12 (2019a).
T. E. O’Brien, B. Tarasinski, B. M. Terhal, Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys.21(2), 023022 (2019b).
P. J. Ollitrault, A. Baiardi, M. Reiher, I. Tavernelli, Hardware efficient quantum algorithms for vibrational structure calculations. Chem. Sci.11(26), 6842–6855 (2020).
C. Outeiral, M. Strahm, J. Shi, G. M. Morris, S. C. Benjamin, C. M. Deane, The prospects of quantum computing in computational molecular biology. Wiley Interdiscip. Rev. Comput. Mol. Sci.11(1), e1481 (2021).
E. Pednault, J. Gunnels, D. Maslov, J. Gambetta, J On, On “Quantum Supremacy” (2019). https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/. Accessed 21 Oct 2010.
P. Piecuch, K. Kowalski, I. S. Pimienta, M. J. Mcguire, Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches. Int. Rev. Phys. Chem.21(4), 527–655 (2002).
J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, et al., Demonstration of the QCCD trapped-ion quantum computer architecture. arXiv preprint arXiv:2003.01293 (2020).
G. D. Purvis III, R. J. Bartlett, A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys.76(4), 1910–1918 (1982).
K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.157(6), 479–483 (1989).
M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci.114(29), 7555–7560 (2017).
B. O. Roos, P. R. Taylor, P. E. Sigbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys.48(2), 157–173 (1980).
K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, S. Elbert, Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chem. Phys.71(1), 41–49 (1982).
E. Runge, E. K. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett.52(12), 997 (1984).
I. G. Ryabinkin, T. -C. Yen, S. N. Genin, A. F. Izmaylov, Qubit coupled cluster method: a systematic approach to quantum chemistry on a quantum computer. J. Chem. Theory Comput.14(12), 6317–6326 (2018).
N. P. Sawaya, T. Menke, T. H. Kyaw, S. Johri, A. Aspuru-Guzik, G. G. Guerreschi, Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. NPJ Quantum Inf.6(1), 1–13 (2020).
J. Schirmer, Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. Phys. Rev. A. 26(5), 2395 (1982).
H. B. Schlegel, Geometry optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci.1(5), 790–809 (2011).
J. Schmidt, P. V. Parandekar, J. C. Tully, Mixed quantum-classical equilibrium: Surface hopping. J. Chem. Phys.129(4), 044104 (2008).
H. M. Senn, W. Thiel, QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed.48(7), 1198–1229 (2009).
S. Sinnecker, F. Neese, L. Noodleman, W. Lubitz, Calculating the electron paramagnetic resonance parameters of exchange coupled transition metal complexes using broken symmetry density functional theory: Application to a MnIII/MnIV model compound. J. Am. Chem. Soc.126(8), 2613–2622 (2004).
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev.41(2), 303–332 (1999).
M. Sprik, G. Ciccotti, Free energy from constrained molecular dynamics. J. Chem. Phys.109(18), 7737–7744 (1998).
J. F. Stanton, R. J. Bartlett, The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys.98(9), 7029–7039 (1993).
J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi, Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem.67:, 387–417 (2016).
C. Suellen, R. G. Freitas, P. -F. Loos, D. Jacquemin, Cross-comparisons between experiment, TD-DFT, CC, and ADC for transition energies. J. Chem. Theory Comput.15(8), 4581–4590 (2019).
P. G. Szalay, T. Muller, G. Gidofalvi, H. Lischka, R. Shepard, Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev.112(1), 108–181 (2012).
M. Szegedy, in 45th Annual IEEE Symposium on Foundations of Computer Science. Quantum speed-up of Markov chain based algorithms. 45th Annual IEEE symposium on foundations of computer science, (2004), pp. 32–41. https://doi.org/10.1109/FOCS.2004.53.
G. M. Torrie, J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys.23(2), 187–199 (1977).
M. Troyer, Towards Practical Quantum Advantage (2021). Quantum Colloquium at Simons Institute for the Theory of Computing. https://www.youtube.com/watch?v=WY3htdKUGsA&t=23s.
L. Veis, J. Pittner, Quantum computing applied to calculations of molecular energies: CH 2 benchmark. J. Chem. Phys.133(19), 194106 (2010).
V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, Quantum computing enhanced computational catalysis. Phys. Rev. Res.3:, 033055 (2021). https://doi.org/10.1103/PhysRevResearch.3.033055.
D. Wecker, M. B. Hastings, M. Troyer, Progress towards practical quantum variational algorithms. Phys. Rev. A. 92(04), 2303 (2015).
S. R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett.69(19), 2863 (1992).
S. R. White, R. L. Martin, Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys.110(9), 4127–4130 (1999).
K. T. Williams, Y. Yao, J. Li, L. Chen, H. Shi, M. Motta, C. Niu, U. Ray, S. Guo, R. J. Anderson, et al., Direct comparison of many-body methods for realistic electronic Hamiltonians. Phys. Rev. X. 10(01), 2020 (1041).