Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy

Frank I. Lin1, Jyotsna Rao2, Erik Mittra1, Kavitha Nallapareddy2, Alka Chengapa2, David Dick3, Sanjiv S. Gambhir4, Andrei Iagaru1
1Division of Nuclear Medicine, Stanford University Medical Center, 300 Pasteur Dr, Room H-2230, Stanford, CA, 94305, USA
2Apollo Gleneagles PET-CT Centre, Hyderabad, India
3Cyclotron Physics, Molecular Imaging Program at Stanford (MIPS), Stanford, CA, USA
4Departments of Radiology, Bioengineering, Materials Science and Engineering, Molecular Imaging Program at Stanford (MIPS), Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Huyge V, Garcia C, Vanderstappen A, Alexiou J, Gil T, Flamen P. Progressive osteoblastic bone metastases in breast cancer negative on FDG-PET. Clin Nucl Med. 2009;34(7):417–20.

Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005;32(11):1253–8.

Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

Chua S, Gnanasegaran G, Cook G. Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39(6):416–30.

Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42(12):1800–4.

Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45(1):27–37.

Bybel B, Brunken R, DiFilippo F, Neumann D, Wu G, Cerqueira M. SPECT/CT imaging: clinical utility of an emerging technology. Radiographics. 2008;28(4):1097–113.

Eftekhari F. Imaging assessment of osteosarcoma in childhood and adolescence: diagnosis, staging, and evaluating response to chemotherapy. Cancer Treat Res. 2009;152:33–62.

James SL, Panicek DM, Davies AM. Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol. 2008;67(1):11–21.

Schmidt G, Reiser M, Baur-Melnyk A. Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol. 2009;70(3):393–400.

Bäuerle T, Semmler W. Imaging response to systemic therapy for bone metastases. Eur Radiol. 2009;19(10):2495–507.

Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

Dasgeb B, Mulligan M, Kim C. The current status of bone scintigraphy in malignant diseases. Semin Musculoskelet Radiol. 2007;11(4):301–11.

National Cancer Institute. New drug for use in bone scans approved; provides an alternative to radioactive tracer that is currently in short supply. http://www.cancer.gov/newscenter/pressreleases/SodiumFluoride18 . Updated 1 Feb 2011. Accessed 27 Oct 2011.

National Oncologic PET Registry. NOPR Update: NOPR announcement regarding coverage change implementation. http://www.cancerpetregistry.org/news.htm#FEB022011 . Updated 1 Feb 2011. Accessed 27 Oct 2011.

Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Breast Dis. 2005;35(2):135–42.

Hetzel M, Arslandemir C, König HH, Buck AK, Nüssle K, Glatting G, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18(12):2206–14.

Petrén-Mallmin M, Andréasson I, Ljunggren O, Ahlström H, Bergh J, Antoni G, et al. Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol. 1998;27(2):72–6.

Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40(10):1623–9.

Iagaru A, Mittra E, Yaghoubi S, Dick DW, Quon A, Goris ML, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50(4):501–5.

Centers for Medicare and Medicaid Services. National Coverage Determination (NCD) for Positron Emission Tomogtaphy (FDG) for Oncologic Conditions (220.6.17). 2010; https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx . Accessed Sep 01, 2011.

Christensen JA, Nathan MA, Mullan BP, Hartman TE, Swensen SJ, Lowe VJ. Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol. 2006;187(5):1361–7.

Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8.

Gallowitsch H-J, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol. 2003;38(5):250–6.

Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39(3):431–5.

Grant F, Fahey F, Packard A, Davis R, Alavi A, Treves T. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78.

Hoegerle S, Juengling F, Otte A, Altehoefer C, Moser EA, Nitzsche EU. Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging? Radiology. 1998;209(1):253–8.

Messiou C, Cook G, deSouza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer. 2009;101(8):1225–32.

Takenaka D, Ohno Y, Matsumoto K, Aoyama N, Onishi Y, Koyama H, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging. 2009;30(2):298–308.

Kwee T, Takahara T, Ochiai R, Koh DM, Ohno Y, Nakanishi K, et al. Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med. 2010;51(10):1549–58.

Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007;6(3):147–55.

Taira A, Herfkens R, Gambhir S, Quon A. Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology. 2007;243(1):204–11.

Blomqvist C, Elomaa I, Virkkunen P, Porkka L, Karonen SL, Risteli L, et al. The response evaluation of bone metastases in mammary carcinoma. The value of radiology, scintigraphy, and biochemical markers of bone metabolism. Cancer. 1987;60(12):2907–12.

Hird A, Chow E, Zhang L, Wong R, Wu J, Sinclair E, et al. Determining the incidence of pain flare following palliative radiotherapy for symptomatic bone metastases: results from three Canadian cancer centers. Int J Radiat Oncol Biol Phys. 2009;75(1):193–7.

Segall G, Delbeke D, Stabin M, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20.

Krüger S, Buck A, Mottaghy F, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(11):1807–12.