Proposed physical explanation for the electron spin and related antisymmetry

Quantum Studies: Mathematics and Foundations - Tập 6 - Trang 45-53 - 2017
Ana Maria Cetto1, L. de la Peña1, A. Valdés-Hernández1
1Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

Tóm tắt

We offer a possible physical explanation for the origin of the electron spin and the related antisymmetry of the wave function for a two-electron system, in the framework of nonrelativistic quantum mechanics as provided by linear stochastic electrodynamics. A consideration of the separate coupling of the electron to circularly polarized modes of the random electromagnetic vacuum field, allows to disclose the spin angular momentum and the associated magnetic moment with a g-factor 2, and to establish the connection with the usual operator formalism. The spin operator turns out to be the generator of internal rotations, in the corresponding coordinate representation. In a bipartite system, the distinction between exchange of particle coordinates (which include the internal rotation angle) and exchange of states becomes crucial. Following the analysis of the respective symmetry properties, the electrons are shown to couple in antiphase to the same vacuum field modes. This finding, encoded in the antisymmetry of the wave function, provides a physical rationale for the Pauli principle. The extension of our results to a multipartite system is briefly discussed.

Tài liệu tham khảo

Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930) Bhabha, H.J., Corben, H.C.: General classical theory of spinning particles in a Maxwell field. Proc. R. Soc. A 178, 273 (1941) Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479 (1952) Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn, p. 262. Clarendon, Oxford (1958) de la Peña, L., Jáuregui, A.: The spin of the electron according to stochastic electrodynamics. Found. Phys. 12, 441 (1982) Sachidanandam, S.: A derivation of intrinsic spin one-half from random electrodynamics. Phys. Lett. A 97, 323 (1983) Muralidhar, K.: The spin bivector and zeropoint energy in geometric algebra. Adv. Stud. Theor. Phys. 6, 675 (2012). [see also by the same author: Classical Origin of Quantum Spin, Apeiron, 18 (2011), 146] Hestenes, D.: The kinematic origin of complex wave functions. In: Grandy Jr., W.T., Milonni, P.W. (eds.) Physics and Probability. Essays in Honor of Edwin T. Jaynes. Cambridge U. P., Cambridge (1993) Cetto, A.M., de la Peña, L., Valdés-Hernández, A.: Emergence of quantization: the spin of the electron. JPCS 504, 012007 (2014) Kaplan, I.G.: The Pauli exclusion principle. Can it be proved? Found. Phys. 43, 1233–1251 (2013) Kaplan, I.G.: The Pauli Exclusion Principle: Origin, Verifications, and Applications. Wiley, New York (2017) Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40, 776–792 (2010). (see also arXiv:0810.2399v4 [quant-ph] 3 Feb 2014) de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: The Emerging Quantum. The Physics Behind Quantum Mechanics. Springer, Berlin (2015) Valdés-Hernández, A., de la Peña, L., Cetto, A.M.: Bipartite entanglement induced by a common background (zero-point) radiation field. Found. Phys. 41, 843 (2011) Cetto, A.M., de la Peña, L.: Electron system correlated by the zero-point field: physical explanation for the spin-statistics connection. JPCS 701, 012008 (2016) Sobelman, I.I.: Atomic Spectra and Radiative Transitions. Springer, Berlin (1979) Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge U. P., Cambridge (1995)