Property (ω) and the Single-valued Extension Property

Springer Science and Business Media LLC - Tập 37 - Trang 1254-1266 - 2021
Lei Dai1,2, Xiao Hong Cao3, Qi Guo3
1School of Mathematics and Statistics, Weinan Normal University, Weinan, P. R. China
2School of Computer Science, Shaanxi Normal University, Xi’an, P. R. China
3School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, P.R. China

Tóm tắt

By the new spectrum originated from the single-valued extension property, we give the necessary and sufficient conditions for a bounded linear operator defined on a Banach space for which property (ω) holds. Meanwhile, the relationship between hypercyclic property (or supercyclic property) and property (ω) is discussed.

Tài liệu tham khảo

Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, 2004 Aiena, P., Peňa, P.: Variations on Weyl’s theorem. J. Math. Anal. Appl., 324(1), 566–579 (2006) Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl., 326(2), 1476–1484 (2007) Cao, X. H.: Weyl type theorem and hypercyclic operators. J. Math. Anal. Appl., 323(1), 267–274 (2006) Cao, X. H., Liu, A. F.: Generalized Kato type operators and property (ω) under perturbations. Linear Algebra Appl., 436(7), 2231–2239 (2012) Colojoara, I., Foias, C.: Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968 Djordjević, D. S., Dragan, S.: Operators obeying a-Weyl’s theorem. Publ. Math. Debrecen, 55, 283–298 (1999) Dunford, N.: Spectral theory II, Resolutions of the identity. Pacific J. Math., 2, 559–614 (1952) Dunford, N.: Spectral operators. Pacific J. Math., 4, 321–354 (1954) Dunford, N., Schwartz, J. T.: Linear Operators, Wiley, New York, Part I (1958), Part II (1963), Part III, 1971 Harte, R. E.: Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988 Harte, R. E., Lee, W. Y.: Another note on Weyl’s theorem. Trans. Amer. Math. Soc., 349(5), 2115–2124 (1997) Herrero, D. A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal., 99(1), 179–190 (1991) Hilden, H. M., Wallen, L. J.: Some cyclic and non-cyclic and non-cyclic vectors for certain operators. Indiana Univ. Math. J., 23(7), 557–566 (1974) Kitai, C.: Invariant closed sets for linear operators, Ph.D. Thesis, Univ. of Toronto, Toronto, 1982 Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000 Oudghiri, M.: Weyl’s and Browder’s theorems for operators satisfying the SVEP. Studia Math., 163(1), 85–101 (2004) Oudghiri, M.: a-Weyl’s theorem and the single valued extension property. Studia Math., 173(2), 193–201 (2006) Rakočević, V.: On a class of operators. Mat. Vesnik., 37, 423–426 (1985) Vasilescu, F. H.: Analytic Functional Calculus and Spectral Decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982 Weyl, H.: Über beschränkte quadratische Formen, deren Dikerenz vollstetig ist. Rend. Circ. Mat. Palermo, 27, 373–392 (1909)