Properties of Newton polynomials and Toeplitz operators on Newton spaces

Eungil Ko1, Eun Ji Lee2, Jongrak Lee3
1Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea
2Department of Mathematics and Statistics, Sejong University, Seoul, Republic of Korea
3Department of Mathematics, Sungkyunkwan University, Suwon, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrews, G.E.: The Theory of Partitions. Reprint of the 1976 Original. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998)

Gander, W.: Change of basis in polynomial interpolation. Numer. Linear Algebra Appl. 12, 769–778 (2005)

Han, K.: Complex symmetric composition operators on Newton space. J. Math. Anal. Appl. 488, 124091 (2020)

Ko, E., Lee, J.E., Lee, J.: Remarks on composition operators on the Newton space. Mediterr. J. Math. 19(5), 205 (2022)

Linde, D.A.: Some Operators on the Newton Spaces. Doctoral Dissertation, University of Virginia, p. 76 (1990)

MacDonald, G., Rosenthal, P.: Composition operators on Newton space. J. Funct. Anal. 260, 2518–2540 (2011)

Markett, C., Rosenblum, M., Rovnyak, J.A.: Plancherel theory for Newton spaces. Integral Equ. Oper. Theory 9(6), 831–862 (1986)

Roman, S.: The Umbral Calculus. Pure and Applied Mathematics, vol. 111. Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York (1984)

Roman, S., Rota, G.C.: The umbral calculus. Adv. Math. 27(2), 95–188 (1978)

Rota, G.C.: The number of partitions of a set. Am. Math. Mon. 71, 498–504 (1964)