Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu Quả Diệt Nhặng Hứa Hẹn Của Nanoliposome Chứa Carvone và Tinh Dầu Mentha spicata và Tanacetum balsamita Đối Với Anopheles stephensi
Acta Parasitologica - Trang 1-11 - 2023
Tóm tắt
Việc sử dụng thuốc trừ sâu tổng hợp để kiểm soát sự lây lan của các bệnh do muỗi truyền đã gây ô nhiễm môi trường và kháng thuốc trừ sâu ở muỗi. Do đó, sự phát triển của các loại thuốc trừ sâu xanh mới đã nhận được nhiều sự quan tâm để vượt qua những vấn đề này. Nanoliposome chứa carvone và tinh dầu đã được chế tạo lần đầu tiên. Các đặc tính vật lý - hóa học của nanoliposome (kích thước hạt, hình thái và khả năng tải thành công) đã được đánh giá bằng phương pháp Tán xạ ánh sáng động (DLS), Kính hiển vi điện tử truyền qua (TEM) và Phân tích phản xạ hoàn toàn suy giảm - Biến đổi Fourier hồng ngoại (ATR-FTIR). Các hiệu ứng diệt ấu trùng của carvone, tinh dầu Mentha spicata và Tanacetum balsamita đã được nghiên cứu đối với véc tơ sốt rét chính, Anopheles stephensi, trong trạng thái chưa được chế phẩm và đã được chế phẩm nano. Các hiệu ứng diệt ấu trùng của trạng thái đã được chế phẩm nano mạnh hơn đáng kể (7,2 lần, 3,5 lần và 8 lần) so với trạng thái chưa được chế phẩm. Nanoliposome chứa tinh dầu M. spicata và T. balsamita với kích thước hạt lần lượt là 175 ± 8 và 184 ± 5 nm cho thấy hiệu quả tốt nhất (giá trị LC50 = 9,74 và 9,36 μg/mL). Các mẫu được chuẩn bị có thể được sử dụng như các chất diệt ấu trùng xanh mạnh mới chống lại muỗi An stephensi trong các thử nghiệm thực địa tiếp theo. Cũng khuyến nghị nên điều tra hiệu quả của chúng đối với các loại muỗi khác.
Từ khóa
#Nanoliposome #carvone #Mentha spicata #Tanacetum balsamita #Anopheles stephensi #thuốc trừ sâu xanh #diệt ấu trùng.Tài liệu tham khảo
Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R (2017) Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist 7:90–109. https://doi.org/10.1016/j.ijpddr.2017.01.004
Sanei-Dehkordi A, Soleimani-Ahmadi M, Jaberhashemi SA, Zare M (2019) Species composition, seasonal abundance and distribution of potential anopheline vectors in a malaria endemic area of Iran: field assessment for malaria elimination. Malar J 18:157. https://doi.org/10.1186/s12936-019-2795-x
WHO (2022) World malaria report 2022. WHO
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ et al (2020) The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis 14:e0007831. https://doi.org/10.1371/journal.pntd.0007831
Kelidari HR, Moemenbellah-Fard MD, Morteza-Semnani K, Amoozegar F, Shahriari-Namadi M, Saeedi M et al (2021) Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J Parasit Dis 45:101–108. https://doi.org/10.1007/s12639-020-01281-x
WHO (2021) World malaria report 2020. WHO
Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J (2019) Malaria situation in Iran: 2002–2017. Malar J 18:200. https://doi.org/10.1186/s12936-019-2836-5
Abadi YS, Sanei-Dehkordi A, Paksa A, Gorouhi MA, Vatandoost H (2021) Monitoring and mapping of insecticide resistance in medically important mosquitoes (Diptera: Culicidae) in Iran (2000–2020): a review. J Arthropod Borne Dis 15:21–40. https://doi.org/10.18502/jad.v15i1.6484
Okumu FO, Moore SJ (2011) Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J 10:208. https://doi.org/10.1186/1475-2875-10-208
Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032. https://doi.org/10.1007/s00436-011-2731-7
Pavela R, Kaffkova K, Kumšta M (2014) Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus say (Diptera: Culicidae). Plant Prot Sci 50:36–42
Kedia A, Prakash B, Mishra PK, Chanotiya CS, Dubey NK (2014) Antifungal, antiaflatoxigenic, and insecticidal efficacy of spearmint (Mentha spicata L.) essential oil. Int Biodeterior Biodegr 89:29–36. https://doi.org/10.1016/j.ibiod.2013.10.027
Kelidari HR, Alipanah H, Roozitalab G, Ebrahimi M, Osanloo M (2022) Anticancer effect of solid-lipid nanoparticles containing mentha longifolia and mentha pulegium essential oils. In vitro study on human melanoma and breast cancer cell lines. Biointerface Res Appl Chem 12:2128–2137. https://doi.org/10.33263/BRIAC122.21282137
Mohammadhosseini M, Venditti A, Mahdavi B, Kianasab MR, Shirazi R (2021) Profiling of the essential oil compositions from the flowers and leaves of Tanacetum fisherae Aitch. & Hemsl., an endemic plant in Kerman province Iran. Nat Prod Res 12:1–6. https://doi.org/10.1080/14786419.2021.1924711
Soleimani-Ahmadi M, Sanei-Dehkordi A, Turki H, Madani A, Abadi YS, Paksa A et al (2017) Phytochemical properties and insecticidal potential of volatile oils from tanacetum persicum and achillea kellalensis against two medically important mosquitoes. J Essent Oil-Bear Plants 20:1254–1265. https://doi.org/10.1080/0972060X.2017.1388752
Lazarevic J, Kostic I, Milanovic S, Šešlija Jovanović D, Krnjajic S, Calic D et al (2021) Repellent activity of Tanacetum parthenium (L.) and Tanacetum vulgare (L.) essential oils against Leptinotarsa decemlineata (Say). Bull Entomol Res 111:190–199. https://doi.org/10.1017/S0007485320000504
Bagci E, Kursat M, Kocak A, Gur S (2008) Composition and antimicrobial activity of the essential oils of Tanacetum balsamita L. subsp. Balsamita and T. chiliophyllum (fisch. et mey.) schultz bip. var. chiliophyllum (asteraceae) from turkey. J Essent Oil-Bear Plants 11:476–484. https://doi.org/10.1080/0972060X.2008.10643656
Authority EFS (2016) Assessment of the pesticide active substance carvone (d-/l-carvone at a ratio of at least 100: 1) for inclusion in Annex IV of Regulation (EC) No 396/2005. EFSA J 14:4405. https://doi.org/10.2903/j.efsa.2016.4405
Aggarwal K, Khanuja S, Ahmad A, Santha Kumar T, Gupta VK, Kumar S (2002) Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr J 17:59–63. https://doi.org/10.1002/ffj.1040
Echeverría J, Albuquerque R (2019) Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines. https://doi.org/10.3390/medicines6020042
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M (2023) Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 13:11002. https://doi.org/10.1038/s41598-023-38284-6
Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F (2016) Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol 44:1597–1608. https://doi.org/10.3109/21691401.2015.1129617
Valizadeh A, Khaleghi AA, Roozitalab G, Osanloo M (2021) High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol Toxicol 22:52. https://doi.org/10.1186/s40360-021-00523-9
Chaves MA, Baldino L, Pinho SC, Reverchon E (2022) Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J Taiwan Inst Chem Eng 132:104120. https://doi.org/10.1016/j.jtice.2021.10.020
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM (2022) Extraction and encapsulation of bioactive compounds: a review. J Food Process Eng 45:e14167. https://doi.org/10.1111/jfpe.14167
Has C, Sunthar P (2020) A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 30:336–365. https://doi.org/10.1080/08982104.2019.1668010
Zhu Y, Li C, Cui H, Lin L (2021) Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control 123:107856. https://doi.org/10.1016/j.foodcont.2020.107856
Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M (2022) Nanoliposomes containing limonene and limonene-rich essential oils as novel larvicides against malaria and filariasis mosquito vectors. BMC Complement Med Ther 22:140. https://doi.org/10.1186/s12906-022-03624-y
Qasemi H, Fereidouni Z, Karimi J, Abdollahi A, Zarenezhad E, Rasti F et al (2021) Promising antibacterial effect of impregnated nanofiber mats with a green nanogel against clinical and standard strains of Pseudomonas aeruginosa and Staphylococcus aureus. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2021.102844
Siria DJ, Batista EPA, Opiyo MA, Melo EF, Sumaye RD, Ngowo HS et al (2018) Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory. Parasit Vectors 11:236. https://doi.org/10.1186/s13071-018-2823-7
WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO
Dj F (1971) Probit analysis. Cambridge University Press, New York
Alipanah H, Rasti F, Zarenezhad E, Dehghan A, Sahebnazar B, Osanloo M (2022) Comparison of anticancer effects of carvone, carvone-rich essential oils, and chitosan nanoparticles containing each of them. Biointerface Res Appl Chem 12:5716–5726. https://doi.org/10.33263/BRIAC124.57165726
Derua YA, Kweka EJ, Kisinza WN, Githeko AK, Mosha FW (2019) Bacterial larvicides used for malaria vector control in sub-Saharan Africa: review of their effectiveness and operational feasibility. Parasit Vectors 12:426. https://doi.org/10.1186/s13071-019-3683-5
Sanei-Dehkordi A, Agholi M, Shafiei M, Osanloo M (2022) Promising larvicidal efficacy of solid lipid nanoparticles containing Mentha longifolia L., Mentha pulegium L., and Zataria multiflora Boiss. Essential oils against the main malaria vector, Anopheles stephensi Liston. Acta Parasitol. https://doi.org/10.1007/s11686-022-00580-y
Ahmed T, Hyder MZ, Liaqat I, Scholz M (2019) Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. Int J Environ Res Public Health 16:3165. https://doi.org/10.3390/ijerph16173165
Owusu HF, Chitnis N, Müller P (2017) Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-03918-z
Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187. https://doi.org/10.1016/j.indcrop.2015.06.050
Ghadimi SN, Sharifi N, Osanloo M (2020) The leishmanicidal activity of essential oils: a systematic review. J Herbmed Pharmacol 9:300–308. https://doi.org/10.34172/jhp.2020.38
Mohafrash SMM, Fallatah SA, Farag SM, Mossa ATH (2020) Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112944
Shahbazi Y (2018) Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries. Int J Biol Macromol 112:264–272. https://doi.org/10.1016/j.ijbiomac.2018.01.186
Shahbazi Y, Shavisi N (2018) Chitosan coatings containing mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. J Aquat Food Prod Technol 27:986–997. https://doi.org/10.1080/10498850.2018.1518945
Azizkhani M, Sodanlo A (2021) Antioxidant activity of Eryngium campestre L., Froriepia subpinnata, and Mentha spicata L. polyphenolic extracts nanocapsulated in chitosan and maltodextrin. J Food Process Preserv 45:e15120. https://doi.org/10.1111/jfpp.15120
Ahmad B, Shireen F, Bashir S, Khan I, Azam S (2016) Green synthesis, characterisation and biological evaluation of AgNPs using Agave americana, Mentha spicata and Mangifera indica aqueous leaves extract. IET Nanobiotechnol 10:281–287. https://doi.org/10.1049/iet-nbt.2015.0053
Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20. https://doi.org/10.1021/nn900002m
Sanei-Dehkordi A, Heiran R, Moemenbellah-Fard MD, Sayah S, Osanloo M (2022) Nanoliposomes containing carvacrol and carvacrol-rich essential oils as effective mosquitoes larvicides. BioNanoScience. https://doi.org/10.1007/s12668-022-00971-5
Sanei-Dehkordi A, Heiran R, Roozitalab G, Elahi N, Osanloo M (2022) Larvicidal effects of nanoliposomes containing clove and cinnamon essential oils, eugenol, and cinnamaldehyde against the main malaria vector, Anopheles stephensi Liston. Psyche 2022:9991238. https://doi.org/10.1155/2022/9991238
Osanloo M, Firoozian S, Zarenezhad E, Montaseri Z, Satvati S (2022) A nanoliposomal gel containing cinnamomum zeylanicum essential oil with effective repellent against the main malaria vector Anopheles stephensi. Interdiscip Perspect Infect Dis 2022:1645485. https://doi.org/10.1155/2022/1645485
Mishra DK, Shandilya R, Mishra PK (2018) Lipid based nanocarriers: a translational perspective. Nanomed-Nanotech 14:2023–2050. https://doi.org/10.1016/j.nano.2018.05.021
Palmas L, Aroffu M, Petretto GL (2020) Entrapment of Citrus limon var. pompia essential oil or pure citral in liposomes tailored as mouthwash for the treatment of oral cavity diseases. Pharmaceuticals (Basel) 13:216. https://doi.org/10.3390/ph13090216
Kitherian S (2017) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9. https://doi.org/10.3923/rjnn.2017.1.9
Zarenezhad E, Ranjbar N, Firooziyan S, Ghoorkhanian M, Osanloo M (2022) Promising larvicidal effects of chitosan nanoparticles containing Laurus nobilis and Trachyspermum ammi essential oils against Anopheles stephensi. Int J Trop Insect Sci 42:895–904. https://doi.org/10.1007/s42690-021-00615-3
Ashbaugh HS, Paulaitis ME (2001) Effect of solute size and solute−water attractive interactions on hydration water structure around hydrophobic solutes. J Am Chem Soc 123:10721–10728. https://doi.org/10.1021/ja016324k
Carlsson J, Åqvist J (2006) Calculations of solute and solvent entropies from molecular dynamics simulations. Phys Chem Chem Phys 8:5385–5395. https://doi.org/10.1039/b608486a
Prakash A, Baskaran R, Paramasivam N, Vadivel V (2018) Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: a review. Food Res Int 111:509–523. https://doi.org/10.1016/j.foodres.2018.05.066
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK (2021) Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chem 344:128574. https://doi.org/10.1016/j.foodchem.2020.128574
Shahzad K, Manzoor F (2021) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 44:1–11. https://doi.org/10.1080/01480545.2018.1525393
Ferreira R, D’Haveloose NP, Cruz RAS, Araujo RS, Carvalho JCT, Rocha L et al (2020) Nano-emulsification enhances the larvicidal potential of the essential oil of Siparuna guianensis (Laurales: Siparunaceae) Against Aedes (Stegomyia) aegypti (Diptera: Culicidae). J Med Entomol 57:788–796. https://doi.org/10.1093/jme/tjz221
Sanei-Dehkordi A, Moemenbellah-Fard MD, Sereshti H, Shahriari-Namadi M, Zarenezhad E, Osanloo M (2021) Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils; repellent and larvicidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. Chem Pap 75:6545–6556. https://doi.org/10.1007/s11696-021-01829-y