Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate

Advanced Energy Materials - Tập 10 Số 11 - 2020
Na Han1, Ding Pan1, Le He1, Youyong Li1, Yanguang Li1
1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China

Tóm tắt

AbstractSelective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field.

Từ khóa


Tài liệu tham khảo

10.1038/ngeo618

10.1126/science.277.5325.494

National Ocean and Atmospheric Administration (NOAA) Climate Change: Atmospheric Carbon Dioxide https://www.climate.gov/news‐features/understanding‐climate/climate‐change‐atmospheric‐carbon‐dioxide(accessed: July2019).

10.1038/nature12350

10.1038/nclimate2572

10.1126/science.1175680

10.1038/nclimate3231

10.1038/s41929-017-0005-1

10.1039/B802262N

10.1126/science.aaf5039

10.1021/ja202642y

10.1038/nphoton.2012.175

10.1002/advs.201700194

10.1021/cr300463y

10.1146/annurev-physchem-032511-143759

10.1021/ef3013757

10.1038/s41929-018-0051-3

10.1039/c1cs15008a

10.1021/acs.jpclett.5b01559

10.1021/jz1012627

10.1039/C2CS35360A

10.1002/adma.201504766

10.1038/nmat4834

10.1038/nmat4778

10.1002/advs.201700275

10.1016/j.chempr.2018.08.019

10.1039/B804323J

10.1039/c2ee21234j

10.1021/cs5012298

10.1246/cl.1986.897

10.1016/0013-4686(90)87078-G

10.1016/0013-4686(94)85172-7

10.1246/cl.1985.1695

10.1038/s41929-019-0235-5

10.1039/C3CS60323G

10.1016/S0166-9834(00)82943-7

10.1002/cssc.200800133

10.1039/b907569k

10.1039/c2ee21928j

10.1007/s10008-011-1398-4

10.1016/S0378-7753(02)00271-9

10.1002/anie.200705972

10.1007/s10800-006-9252-6

10.1038/s41557-018-0092-x

10.1126/science.aas9100

10.1038/s41929-018-0084-7

10.1038/s41929-017-0009-x

10.1002/cssc.201600394

10.1021/acs.iecr.7b03514

10.1016/j.joule.2017.09.003

10.1021/acscatal.7b03477

10.1016/j.nanoen.2016.04.009

10.1021/acs.jpclett.5b00722

10.1002/adma.201802066

10.1016/j.chempr.2017.08.002

10.1038/s41467-018-03712-z

10.1002/aenm.201801536

10.1038/s41467-019-10819-4

10.1021/cs502128q

10.1016/j.nanoen.2016.03.024

10.1002/aenm.201602114

10.1021/jacs.5b02975

10.1021/jacs.7b08607

10.1073/pnas.1713962115

10.1021/acs.jpclett.5b02554

10.1039/c0ee00071j

10.1021/jz201461p

10.1021/jz3021155

10.1021/acscatal.7b00687

10.1016/j.jelechem.2006.05.013

10.1002/cssc.201501197

10.1023/A:1018441316386

Hori Y., 2008, Modern Aspects of Electrochemistry

10.1021/acscatal.5b00808

10.1021/acs.inorgchem.8b02311

10.1021/acs.jpcc.8b08794

10.1039/C8TA10959A

10.1021/acscatal.7b03612

10.1002/adma.201807166

Ito K., 1975, Bull. Nagoya Inst. Technol., 27, 209

10.1016/0013-4686(84)87028-0

10.1021/ja2108799

10.1039/C3TA13544F

10.1002/anie.201608279

10.1016/j.jechem.2018.12.004

10.1021/acscatal.6b00412

10.1039/C6TA10733H

10.1002/anie.201612194

10.1016/j.nanoen.2016.11.004

10.1016/j.joule.2017.09.014

10.1021/ja4113885

10.1038/ncomms12697

10.5796/kogyobutsurikagaku.63.217

10.1021/ja4033549

10.1021/ja501923g

Zhou R., 2019, J. Electrochem., 25, 445

10.1021/acscatal.7b00707

10.1016/j.nanoen.2017.05.065

10.1016/j.progsurf.2006.03.001

10.1126/science.1226419

10.1021/acs.nanolett.5b01842

10.1126/science.1194975

10.1016/j.nanoen.2018.09.053

10.1002/adma.201802858

10.1021/acscatal.7b03242

10.1002/anie.201807643

10.1002/celc.201700935

10.1039/C8TA11645H

10.1021/la501245p

10.1038/s41467-019-08805-x

10.1021/cs5017672

10.1007/s11705-014-1444-8

10.1021/ja5121088

10.1002/anie.201710038

10.1039/C8EE03134G

10.1021/acs.accounts.8b00010

10.1039/C5GC01893E

10.1007/s10800-005-9058-y

10.1039/C8EE01684D

10.1021/ja407115p

10.1007/s12274-014-0591-z

10.1039/C6CS00328A

10.1039/C9EE00909D

10.1039/C9EE01204D

10.1039/C4TA03893B

10.1002/anie.201803501

10.1038/s41929-018-0182-6

10.1016/S0079-6816(97)00032-4

10.1021/acscatal.5b00402

10.1021/acscatal.6b01879

10.1021/acscatal.5b02322

10.1021/acs.accounts.6b00327

10.1038/s41560-018-0292-z

10.1007/s40820-019-0277-x

10.1016/j.jechem.2018.03.020

10.1021/ja5031529

10.1039/C6GC00410E

10.1021/jacs.7b00261

10.1021/acscatal.6b00269

10.1002/anie.201410233

10.1021/acscatal.7b01161

10.1002/cjoc.201900010

10.1038/s41560-019-0374-6

10.1038/s41560-019-0451-x

10.1021/ja1024639

10.1038/s41467-018-02819-7

10.1039/C8TA01367E

10.1002/cssc.201500694

10.1021/acsaem.8b02048

10.1039/C7TA07495F

10.1002/cssc.201802725

10.1002/adfm.201706289

10.1002/aenm.201702524

10.1039/C6TA06202D

10.1002/anie.201807466

10.1039/C8TA00023A

10.1002/ange.201810538

10.1002/cssc.201802409

10.1149/2.0681606jes

10.1039/C7TA06570A

10.1007/s12678-010-0017-y

10.1016/j.apcata.2004.07.006