Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway

Springer Science and Business Media LLC - Tập 6 - Trang 1-16 - 2016
Junchul Shin1, Aki Nunomiya1, Yasuo Kitajima1, Takashi Dan2, Toshio Miyata2, Ryoichi Nagatomi1,3,4
1Department of Medicine & Science in Sport & Exercise, Tohoku University School of Medicine, Sendai, Japan
2Division of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
3Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
4Center for Sports Medicine and Science, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan

Tóm tắt

Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition. PHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice. Taken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration.

Tài liệu tham khảo

Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371–423. An D, Lessard SJ, Toyoda T, Lee MY, Koh HJ, Qi L, et al. Overexpression of TRB3 in muscle alters muscle fiber type and improves exercise capacity in mice. Am J Physiol Regul Integr Comp Physiol. 2014;306(12):R925–33. doi:10.1152/ajpregu.00027.2014. Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, et al. Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch. 1990;416(4):470–2. Matsuura T, Li Y, Giacobino JP, Fu FH, Huard J. Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury. J Orthop Res. 2007;25(11):1534–40. doi:10.1002/jor.20451. Yamaguchi T, Omori M, Tanaka N, Fukui N. Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts. Am J Physiol Cell Physiol. 2013;305(3):C323–33. doi:10.1152/ajpcell.00393.2012. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem. 2007;282(41):30014–21. doi:10.1074/jbc.M704817200. Karuppagounder SS, Ratan RR. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? J Cereb Blood Flow Metab. 2012;32(7):1347–61. doi:10.1038/jcbfm.2012.28. Ono Y, Sensui H, Sakamoto Y, Nagatomi R. Knockdown of hypoxia-inducible factor-1alpha by siRNA inhibits C2C12 myoblast differentiation. J Cell Biochem. 2006;98(3):642–9. doi:10.1002/jcb.20804. Thom R, Rowe GC, Jang C, Safdar A, Arany Z. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha. J Biol Chem. 2014;289(13):8810–7. doi:10.1074/jbc.M114.554394. Xie HC, He JP, Zhu JF, Li JG. Expression of HIF-1alpha and VEGF in skeletal muscle of plateau animals in response to hypoxic stress. Physiol Res. 2014;63(6):801–5. Niemi H, Honkonen K, Korpisalo P, Huusko J, Kansanen E, Merentie M, et al. HIF-1alpha and HIF-2alpha induce angiogenesis and improve muscle energy recovery. Eur J Clin Invest. 2014;44(10):989–99. doi:10.1111/eci.12333. Slot IG, Schols AM, de Theije CC, Snepvangers FJ, Gosker HR. Alterations in skeletal muscle oxidative phenotype in mice exposed to three weeks of normobaric hypoxia. J Cell Physiol. 2015. doi:10.1002/jcp.25083. Slot IG, Schols AM, Vosse BA, Kelders MC, Gosker HR. Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1alpha-dependent manner. Cell Signal. 2014;26(9):1837–45. doi:10.1016/j.cellsig.2014.04.016. Rasbach KA, Gupta RK, Ruas JL, Wu J, Naseri E, Estall JL, et al. PGC-1alpha regulates a HIF2alpha-dependent switch in skeletal muscle fiber types. Proc Natl Acad Sci U S A. 2010;107(50):21866–71. doi:10.1073/pnas.1016089107. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–80. doi:10.1124/mol.106.027029. Ikeda J, Ichiki T, Matsuura H, Inoue E, Kishimoto J, Watanabe A, et al. Deletion of phd2 in myeloid lineage attenuates hypertensive cardiovascular remodeling. J Am Heart Assoc. 2013;2(3), e000178. doi:10.1161/JAHA.113.000178. Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood. 2009;114(10):2015–9. doi:10.1182/blood-2009-05-189985. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–65. doi:10.1074/jbc.M406026200. Katschinski DM. In vivo functions of the prolyl-4-hydroxylase domain oxygen sensors: direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol (Oxf). 2009;195(4):407–14. doi:10.1111/j.1748-1716.2008.01952.x. Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007;2007(407):cm8. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev. 2001;15(19):2520–32. doi:10.1101/gad.914801. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation. 2007;116(7):774–81. doi:10.1161/CIRCULATIONAHA.107.701516. Berra E, Ginouves A, Pouyssegur J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. 2006;7(1):41–5. doi:10.1038/sj.embor.7400598. Suehiro J, Kanki Y, Makihara C, Schadler K, Miura M, Manabe Y, et al. Genome-wide approaches reveal functional vascular endothelial growth factor (VEGF)-inducible nuclear factor of activated T cells (NFAT) c1 binding to angiogenesis-related genes in the endothelium. J Biol Chem. 2014;289(42):29044–59. doi:10.1074/jbc.M114.555235. Kitajima Y, Tashiro Y, Suzuki N, Warita H, Kato M, Tateyama M, et al. Proteasome dysfunction induces muscle growth defects and protein aggregation. J Cell Sci. 2014;127(24):5204–17. doi:10.1242/jcs.150961. Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010;31(9):1085–94. doi:10.1038/aps.2010.132. Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15(4):635–41. doi:10.1038/cdd.2008.10. D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem. 2003;278(40):38183–7. doi:10.1074/jbc.M302244200. Franke K, Kalucka J, Mamlouk S, Singh RP, Muschter A, Weidemann A, et al. HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis. Blood. 2013;121(8):1436–45. doi:10.1182/blood-2012-08-449181. Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol. 2010;30(12):2331–6. doi:10.1161/ATVBAHA.110.214106. Kanatous SB, Mammen PP, Rosenberg PB, Martin CM, White MD, Dimaio JM, et al. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am J Physiol Cell Physiol. 2009;296(3):C393–402. doi:10.1152/ajpcell.00428.2008. de Theije CC, Langen RC, Lamers WH, Gosker HR, Schols AM, Kohler SE. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. J Appl Physiol (1985). 2015;118(2):200–11. doi:10.1152/japplphysiol.00624.2014. Wang L, Jia Y, Rogers H, Suzuki N, Gassmann M, Wang Q, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1alpha and AMPK activation. Int J Biochem Cell Biol. 2013;45(7):1155–64. doi:10.1016/j.biocel.2013.03.007. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801. doi:10.1038/nature00904. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999;96(5):611–4. Rybkin II OM, Copeland V, Czubryt MP, Shelton JM, van Rooij E, et al. Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Mol Cell Biol. 2005;25(15):6629–38. doi:10.1128/MCB.25.15.6629-6638.2005. Jiang LQ, Garcia-Roves PM, de Castro BT, Zierath JR. Constitutively active calcineurin in skeletal muscle increases endurance performance and mitochondrial respiratory capacity. Am J Physiol Endocrinol Metab. 2010;298(1):E8–16. doi:10.1152/ajpendo.00403.2009. Wittenberg BA. Both hypoxia and work are required to enhance expression of myoglobin in skeletal muscle. Focus on “Hypoxia reprograms calcium signaling and regulates myoglobin expression”. Am J Physiol Cell Physiol. 2009;296(3):C390–2. doi:10.1152/ajpcell.00002.2009. Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. Int Rev Cell Mol Biol. 2009;277:67–101. doi:10.1016/S1937-6448(09)77002-9. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47. doi:10.1146/Annurev.Immunol.15.1.707. Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ. Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J Cell Physiol. 2007;211(1):138–48. doi:10.1002/jcp.20916. Miyazaki M, Hitomi Y, Kizaki T, Ohno H, Haga S, Takemasa T. Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition. J Physiol Pharmacol. 2004;55(4):751–64. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12. doi:10.1016/j.cellsig.2007.05.013. Favia A, Desideri M, Gambara G, D’Alessio A, Ruas M, Esposito B, et al. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling. Proc Natl Acad Sci U S A. 2014;111(44):E4706–15. doi:10.1073/pnas.1406029111. Anisimov A, Leppanen VM, Tvorogov D, Zarkada G, Jeltsch M, Holopainen T, et al. The basis for the distinct biological activities of vascular endothelial growth factor receptor-1 ligands. Sci Signal. 2013;6:ra52. doi:10.1126/scisignal.2003905. Holmes K, Chapman E, See V, Cross MJ. VEGF stimulates RCAN1.4 expression in endothelial cells via a pathway requiring Ca2+/calcineurin and protein kinase C-delta. PLoS One. 2010;5(7), e11435. doi:10.1371/journal.pone.0011435. van Weel V, Deckers MM, Grimbergen JM, van Leuven KJ, Lardenoye JH, Schlingemann RO, et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res. 2004;95(1):58–66. doi:10.1161/01.RES.0000133247.69803.c3. Waters RE, Rotevatn S, Li P, Annex BH, Yan Z. Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. Am J Physiol Cell Physiol. 2004;287(5):C1342–8. doi:10.1152/ajpcell.00247.2004.