Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain

Jan Kaslin1, Julia Ganz1, Michael Brand1
1Biotechnology Centre and Centre for Regenerative Therapies Dresden, Dresden University of TechnologyTatzberg 47-51, 01307 Dresden, Germany

Tóm tắt

Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiatedin vitrofrom several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.

Từ khóa


Tài liệu tham khảo

10.1523/JNEUROSCI.20-08-02896.2000

10.1016/j.ydbio.2006.03.023

10.1002/cne.901370404

10.1002/cne.901240303

10.1002/(SICI)1521-1878(200006)22:6<578::AID-BIES11>3.0.CO;2-#

10.1073/pnas.0308118101

10.1002/(SICI)1097-4695(19971105)33:5<585::AID-NEU7>3.0.CO;2-0

10.1016/S0896-6273(04)00111-4

10.1038/335353a0

10.1523/JNEUROSCI.08-08-02707.1988

10.1016/0896-6273(90)90038-H

10.1002/neu.480230406

10.1002/cne.903470207

10.1038/35067582

10.1016/S0361-9230(01)00770-5

10.1016/S0165-3806(02)00277-8

10.1002/cne.11021

10.1038/nm747

10.1016/0896-6273(94)90026-4

10.1073/pnas.91.23.11217

10.1073/pnas.93.2.714

10.1016/j.neuroscience.2004.08.047

10.1002/cne.901830308

10.1016/S0042-6989(97)00212-5

10.1016/j.devbrainres.2004.03.021

10.1073/pnas.94.19.10432

10.1523/JNEUROSCI.21-17-06718.2001

10.1073/pnas.172403999

10.1002/ar.1092280413

10.1016/S0736-5748(96)00066-4

10.1016/S0304-3940(00)01368-9

10.1097/00001756-200508010-00003

10.1002/cne.901940202

10.1523/JNEUROSCI.05-06-01556.1985

10.1159/000116489

10.1159/000115867

10.1126/science.276.5309.81

10.1038/nrm881

10.1016/j.brainresbull.2005.03.021

10.1073/pnas.0506535102

10.1016/S0306-4522(01)00215-9

10.1210/endo-103-6-2283

10.1002/(SICI)1097-4695(199808)36:2<190::AID-NEU7>3.0.CO;2-X

10.1016/0306-4522(93)90335-D

10.1016/S0006-8993(02)02537-4

10.1038/ng1395

10.1038/nn1048

10.1016/S0171-9335(98)80105-2

10.1073/pnas.0406795101

10.1007/BF00318621

10.1098/rstb.2001.0947

10.1038/nrn1180

10.1016/S0165-3806(01)00193-6

10.1038/80606

10.1523/JNEUROSCI.16-08-02649.1996

10.1073/pnas.0306336101

10.1073/pnas.1532244100

10.1159/000006673

10.1002/1097-4547(20000901)61:5<471::AID-JNR1>3.0.CO;2-N

10.1016/S1044-7431(03)00210-0

10.1083/jcb.200407053

10.1523/JNEUROSCI.21-01-00201.2001

Del Grande P, 1990, Mitotic activity of the telencephalic matrix areas following optic tectum or pallial cortex lesion in newt, Z. Mikrosk Anat. Forsch, 104, 617

10.1038/nature03651

10.1038/nn1144

10.1016/j.conb.2005.01.018

10.1159/000057572

10.1002/cne.1056

10.1602/neurorx.1.4.452

10.1016/j.pneurobio.2005.04.002

10.1038/3305

10.1002/cne.900970108

10.1016/j.conb.2005.01.005

10.1073/pnas.97.26.14686

10.1016/S0361-9230(99)00072-6

10.2174/1567202043362397

Filoni S, 1969, A study of the regenerative capacity of the central nervous system of anuran amphibia in relation to their stage of development. I. Observations on the regeneration of the optic lobe of Xenopus laevis (Daudin) in the larval stages, Arch. Biol, 80, 369

Filoni S, 1971, A study of the regeneration of the cerebellum of Xenopus leavis (Daudin) in the larval stages and after metamorphosis, Arch. Biol, 82, 433

Filoni S, 1995, Differences in the decrease in regenerative capacity of various brain regions of Xenopus laevis are related to differences in the undifferentiated cell populations, J. Hirnforsch, 36, 523

10.1016/0006-8993(91)90937-Q

10.1002/cne.903590108

10.1016/S0006-8993(97)00085-1

10.1159/000057570

10.1523/JNEUROSCI.21-22-08943.2001

10.1016/0304-3940(89)90408-4

10.1016/S0361-9230(01)00769-9

10.1016/j.tins.2003.09.011

10.1038/nbt1119

10.1073/pnas.80.8.2390

10.1002/(SICI)1097-4695(199608)30:4<505::AID-NEU6>3.0.CO;2-7

10.1016/S0022-5193(05)80704-0

Götz M, 2005, Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons, Neuron, 46, 369

10.1016/S0361-9230(01)00777-8

10.1126/science.286.5439.548

10.1073/pnas.181354698

10.1016/j.ydbio.2006.03.040

10.1016/j.neuroscience.2004.05.028

10.1002/(SICI)1096-9861(19991011)413:1<146::AID-CNE10>3.0.CO;2-B

10.1159/000113239

10.1038/nn828

10.1101/gad.326905

10.1073/pnas.92.6.2061

Jacobson M Developmental neurobiology. 3rd edn. 1991 New York NY:Plenum Press.

10.1073/pnas.182296499

10.1016/S1044-7431(03)00159-3

10.1073/pnas.2634794100

10.1073/pnas.0403678101

10.1016/S0092-8674(00)80956-3

10.1002/cne.901760303

10.1016/S0361-9230(01)00713-4

10.1242/dev.00203

10.1016/j.tins.2004.05.013

10.1016/j.conb.2004.03.001

10.1523/JNEUROSCI.11-06-01756.1991

10.1002/(SICI)1096-9861(19990830)411:3<487::AID-CNE10>3.0.CO;2-M

Kirsche W, 1950, Die regenerativen Vorgänge am Rückenmark erwaschsener Teleostier nach operativer kontinuitätstrennung, Z. Mikrosk Anat. Forsch, 56, 190

Kirsche W, 1960, Experimentelle untersuchungen zur frage der regeneration und function des tectum opticum con Carassius carassius L, Zeittschr.f.mikro.-anat. Forschung, 67, 140

Kirsche W, 1965, Regenerative processes in the brain and spinal cord, Ergeb Anat. Entwicklungsgesch, 38, 143

Kirsche W, 1967, On postembryonic matrix zones in the brain of various vertebrates and their relationship to the study of the brain structure, Z. Mikrosk Anat. Forsch, 77, 313

10.1093/cercor/4.6.576

10.1523/JNEUROSCI.23-03-00937.2003

10.1126/science.289.5485.1754

10.1007/BF00002560

10.1016/S0165-3806(01)00287-5

10.1523/JNEUROSCI.17-15-05820.1997

10.1038/nn983

10.1002/neu.10099

10.1016/S0361-9230(01)00710-9

10.1073/pnas.250471697

10.1038/nn1473

10.1002/cne.901790103

10.1016/S0166-2236(00)01691-X

10.1159/000118648

10.1038/nature04108

10.1016/S0896-6273(00)00148-3

10.1002/(SICI)1096-9861(19970310)379:2<300::AID-CNE10>3.0.CO;2-T

10.1038/nrn1867

10.1126/science.8178174

10.1126/science.271.5251.978

Lopez-Garcia C, 1984, Increase of the neuron number in some cerebral cortical areas of a lizard, Podarcis hispanica, (Steind., 1870), during postnatal periods of life, J. Hirnforsch, 25, 255

10.1016/0165-3806(88)90096-X

10.1016/0165-3806(90)90050-9

10.1590/S0001-37652002000100006

10.1016/0896-6273(93)90281-U

10.1016/j.conb.2005.08.003

10.1016/S0896-6273(03)00561-0

10.1038/35016083

10.1523/JNEUROSCI.2250-05.2005

10.1016/j.neuroscience.2005.04.014

10.1017/S095252389916303X

Margotta V, 1997, Contribution of radial glial cells to neurogenesis and plasticity of central nervous system in adult vertebrates, Anim. Biol, 6, 101

10.1523/JNEUROSCI.4161-03.2004

10.1016/0006-8993(94)90272-0

10.1007/978-3-642-18262-4_15

10.1016/j.tins.2005.09.007

10.1002/1098-1136(200009)31:3<267::AID-GLIA80>3.0.CO;2-N

10.1523/JNEUROSCI.21-16-06147.2001

10.1002/cne.10726

10.1002/cne.20497

10.1016/0014-4886(78)90204-2

Minelli G, 1990, Proliferative response of the mesencephalic matrix areas in the reparation of the optic tectum of Triturus cristatus carnifex, Z. Mikrosk. Anat. Forsch, 104, 17

10.1016/0306-4522(95)00201-S

10.1016/0006-8993(88)90103-5

10.1016/S0092-8674(02)00862-0

10.1016/0006-8993(80)90102-X

10.1111/j.1749-6632.1985.tb20803.x

10.1073/pnas.91.17.7849

10.1038/nm837

10.1242/dev.01567

10.1523/JNEUROSCI.19-19-08487.1999

10.1016/S0959-437X(02)00329-5

10.1101/gad.894701

10.1523/JNEUROSCI.17-10-03727.1997

10.1523/JNEUROSCI.22-08-03174.2002

10.1002/ana.10393

10.1002/hipo.20166

10.1002/path.1645

10.1016/j.ygcen.2004.12.003

10.1097/00001756-199605170-00007

10.1006/exnr.2001.7768

10.1523/JNEUROSCI.21-17-06706.2001

10.1016/S0165-3806(97)00058-8

10.1016/0304-3940(89)90204-8

10.1016/0165-3806(84)90097-X

Platel R, 1974, Poids encéphalique et indice d'encéphalisation chez les reptiles sauriens, Zool. Anz, 192, 332

10.1007/BF00318622

10.1002/(SICI)1098-1136(20000115)29:2<166::AID-GLIA10>3.0.CO;2-G

10.1002/cne.20798

Rahmann H, 1968, Autoradiographische Untersuchungen zum DNSstoffwechsel (Mitose-Haüfigkeit) im ZNS von Brachydanio rerio HAM. BUCH. (Cyprinidae, Pisces), J. Hirnforsch, 10, 279

10.1038/nrn700

10.1038/427685a

10.1097/00001756-199707070-00047

10.1002/cne.10390

10.1016/S0896-6273(00)80678-9

10.1016/j.jchemneu.2006.08.001

10.1523/JNEUROSCI.03-05-01077.1983

Richter W, 1965, Regeneration in the tectum opticum of Leucaspius delineatus (Heckel 1843), Z. Mikrosk. Anat. Forsch, 74, 46

Richter W, 1969, Regeneration im telencephalon von juvenilen und adulten Lebistes reticulates (Teleostei), Zeittschr.f.mikro.-anat. Forschung, 81, 345

Richter W, 1981, Autoradiographische Untersuchungen der postnatalen Proliferationsaktivität der Matrixzonen des Gehirns der Forelle (Salmo irideus), Z. Mikrosk. Anat. Forsch, 95, 491

10.1523/JNEUROSCI.22-07-02894.2002

10.1016/j.expneurol.2004.03.014

10.1002/cne.903510106

10.1159/000072438

10.1038/nature02301

10.1016/S0896-6273(00)80910-1

10.1016/S0079-6123(08)63743-7

10.1523/JNEUROSCI.13-06-02351.1993

10.1523/JNEUROSCI.21-18-07153.2001

10.1002/cne.20288

10.1007/BF00576578

10.1098/rstb.2004.1463

10.1523/JNEUROSCI.3452-05.2005

10.1016/S0165-3806(96)00145-9

10.1523/JNEUROSCI.1108-04.2005

Srebro Z, 1965, Endbrain regeneration in adult Xenopus laevis, Folia Biol, 13, 269

Straznicky K, 1971, Growth of the retina in Xenopus laevis: an autoradiographic study, J. Embryol. Exp. Morphol, 26, 67

Straznicky K, 1972, The development of the tectum in Xenopus laevis: an autoradiographic study, J. Embryol. Exp. Morphol, 28, 87

10.1023/B:NEUR.0000029654.70632.3a

10.1002/(SICI)1096-9861(19961223)376:4<653::AID-CNE11>3.0.CO;2-N

10.1038/35102174

10.1016/S0166-2236(00)01558-7

10.1038/4151030a

10.1002/neu.20158

10.1002/cne.11013

10.1002/cne.902890106

10.1046/j.1460-9568.2002.02238.x

10.1002/hipo.20167

10.1007/s004290050232

10.1016/j.expneurol.2004.12.021

10.1006/exnr.2001.7798

10.1002/cne.902950405

10.1111/j.1440-169x.2004.00767.x

10.1111/j.1440-169X.2006.00840.x

10.1523/JNEUROSCI.1109-04.2004

10.1177/1073858405278865

10.1073/pnas.1131955100

10.1159/000082136

10.1159/000047215

10.1097/00001756-200108080-00038

Zupanc G.K, 1999, Neurogenesis, cell death and regeneration in the adult gymnotiform brain, J. Exp. Biol, 202, 1435, 10.1242/jeb.202.10.1435

10.1159/000057569

10.1002/glia.10236

10.1002/cne.903530205

10.1139/z93-323

10.1006/exnr.1999.7182

10.1073/pnas.89.20.9539

10.1002/(SICI)1096-9861(19960708)370:4<443::AID-CNE3>3.0.CO;2-4

10.1002/cne.20571