Products and factors of Banach function spaces

Positivity - Tập 14 - Trang 301-319 - 2009
Anton R. Schep1
1Department of Mathematics, University of South Carolina, Columbia, USA

Tóm tắt

Given two Banach function spaces we study the pointwise product space E · F, especially for the case that the pointwise product of their unit balls is again convex. We then give conditions on when the pointwise product E · M(E, F) = F, where M(E, F) denotes the space of multiplication operators from E into F.

Tài liệu tham khảo

Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), viii+130. (1996) Berezhnoi E.I., Maligranda L.: Representation of Banach ideal spaces and factorization of operators . Can. J. Math. 57(5), 897–940 (2005) Bollobás B., Brightwell G.R.: Convex bodies, graphs and partial orders. Proc. Lond. Math. Soc. (3) 80(2), 415–450 (2000) Bollobás B., Leader I.: Generalized duals of unconditional spaces and Lozanovskiĭ’s theorem. C. R. Acad. Sci. Paris Sér. I Math. 317(6), 583–588 (1993) Bollobás, B., Leader, I.: Products of unconditional bodies. Geometric aspects of functional analysis (Israel, 1992–1994). Oper. Theory Adv. Appl. 77, 13–24. Birkhäuser, Basel (1995) Calabuig J.M., Delgado O., Sanchez Perez E.A.: Generalized perfect spaces. Indagationes 19(3), 359 (2008) Cwikel, M., Nilsson, P.G., Schechtman, G.: Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices. Mem. Am. Math. Soc. 165(787), vi–127 (2003) Dodds P.: Indices for Banach lattices. Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math 39(2), 73–86 (1977) Gillespie T.A.: Factorization in Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 43(3), 287–300 (1981) Grobler J.J.: Indices for Banach function spaces. Math. Z. 145(2), 99–109 (1975) Kalton N.J., Peck N.T., Roberts J.W.: An F-space sampler. London Mathematical Society Lecture Note Series, vol 89. Cambridge University Press, Cambridge (1984) Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979) Lozanovskii G.Ya.: On some Banach lattices. Sib. Math. J. 10, 419–431 (1969) Lozanovskii G.Ya.: On some Banach lattices. IV. Sib. Math. J. 14, 97–108 (1973) Maligranda L., Persson L.E.: Generalized duality of some Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 51(3), 323–338 (1989) Nilsson P.: Interpolation of Banach lattices. Stud. Math. 82(2), 135–154 (1985) Raynaud Y.: On duals of Calderón-Lozanovskiĭ intermediate spaces. Stud. Math. 124(1), 9–36 (1997) Reisner, S.: A factorization theorem in Banach lattices and its application to Lorentz spaces. Ann. Inst. Fourier (Grenoble) 31(1), viii – 239–255 (1981) Reisner, S.: On two theorems of Lozanovskiĭ concerning intermediate Banach lattices. Geometric aspects of functional analysis (1986/87). Lect. Notes Math. 1317, 67–83. Springer, Berlin (1988) Reisner S.: Some remarks on Lozanovskyi’s intermediate normed lattices. Bull. Polish Acad. Sci. Math. 41(3), 189–196 (1993) Schep A.R.: Products of Cesaro convergent sequences with applications to convex solid sets and integral operators. Proc. Am. Math. Soc. 137, 579–584 (2009) Schep A.R.: Convex solid subsets of L 0(X, μ). Positivity 9(3), 491–499 (2005) Zaanen A.C.: Integration. Completely revised edition of “An Introduction to the Theory of Integration”. North-Holland Publishing Co., Amsterdam (1967) Zaanen A.C.: Riesz Spaces. II. North-Holland Mathematical Library, vol. 30. North-Holland Publishing Co., Amsterdam (1983)