Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity
Tóm tắt
The production of monoglycerides by glycerolysis of olive oil catalyzed by lipases from Candida rugosa, Chromobacterium viscosum and Rhizopus sp. immobilized in a hydrophylic polyurethane foam was investigated. The effect of the amount of aqueous phase used for foam polymerization on the competing reactions of glycerolysis and hydrolysis was studied. The highest monoglyceride production was achieved with the C. rugosa lipase which was thus selected for subsequent studies. The extent to which hydrolysis and glycerolysis occur and the influence of the initial a
w
of the system on both reactions were also investigated. In glycerolytic reaction systems, initial rates of fatty acid release were always higher than in hydrolytic systems. At a
w
values lower than 0.43, hydrolysis was completely repressed, although glycerolysis still occurred. This suggests that hydrolysis of the ester bond in the glyceride, promoted by glycerol, is the first reaction step. In glycerolysis, initial rates of FFA and DG production increased exponentially with the initial a
w
of the system. The lowest total conversion (in terms of % TG consumed) at 48 hours was obtained at intermediate a
w
values; higher conversions at extreme a
w
indicated an increase in hydrolytic and glycerolytic rates, at high and low a
w
respectively. The yield of MG increased with decreasing a
w
. The highest yield of MG (∼70%, w/w) was obtained at the lowest a
w
used (0.23). The initial a
w
of the reaction system is an important parameter in glycerolysis.
Tài liệu tham khảo
Sonntag, N.O.V.: Glycerolysis of fats and methyl esters — Status, review and critique. J. Am. Oil Chem. Soc. 59 (1982) 795A-802A
Lauridsen, J.B.: Food emulsifier: surface activity, edibility, manufacture, composition, and application J. Am. Oil Chem. Soc. 53 (1976) 400–407
Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. J. Am. Oil Chem. Soc. 61 (1984) 776–781
Schuch, R.; Mukherjee, K.: Lipase-catalyzed reaction of fatty acids with glycerol and acylglycerols. Appl. Microbiol. Biotechnol. 30 (1989) 332–336
Hayes, D.G.; Gulari, E.: Esterification reactions of lipase in reverse micelles. Biotechnol. Bioeng. 35 (1990) 793–801
Hayes, D.G.; Gulari, E.: I-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles. Biotechnol. Bioeng. 38 (1991) 507–517
Akoh, C.; Cooper, C.; Nwosu, C.V.: Lipase G-catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J. Am. Oil Chem. Soc. 69 (1992) 257–260
Berger, M.; Schneider, M.P.: Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-racmonoacylglycerols. J. Am. Oil Chem. Soc. 69 (1992) 961–965
van der Padt, A.; Keurentjes, J.T.F.; Sewalt, J.J.W.; van Dam, E.M.; van Dorp, L.J.; van't Riet, K.: Enzymatic synthesis of monoglycerides in a membrane bioreactor with an in-line adsorption column. J. Am. Oil Chem. Soc. 69 (1992) 748
Akoh, C.: Lipase-catalyzed synthesis of partial glyceride. Biotechnol. Lett. 15 (1993) 949–954
Österberg, E.; Ristoff, C.; Holmberg, K.: Lipase catalysed hydrolysis. Tenside, Surfactants, Detergents 25 (1988) 293–297
Österberg, E.; Blomstrom, A.C.; Holmberg, K.: Lipase catalysed transesterification of unsaturated lipids in a microemulsion. J. Am. Oil Chem. Soc., 66 (1988) 1330–1333
Mukesh, D.; Bannerji, R.; Newadkar, R.; Bevinakatti, H.S.: Mathematical modelling of enzymatic butanolysis of vegetable oils. Biocatalysis 8 (1993) 191–199
Zuyi, L.; Ward, O.P.: Stability of microbial lipase in alcoholysis of fish oil during repeated enzyme use. Biotechnol. Lett. 15 (1993) 393–398
Chang, P.S.; Rhee, J.S.: Characteristics of lipase-catalyzed glycerolysis of triglyceride in AOT-isooctane reversed micelles. Biocatalysis 3 (1990) 343–355
Chang, P.S.; Rhee, J.S.; Kim, J-J.: Continuous glycerolysis of olive oil by Chromobacterium viscosum lipase immobilized on liposome in reversed micelles. Biotechnol. Bioeng. 38 (1991) 1159–1165
Ferreira-Dias, S.; Fonseca, M.M.R.: Enzyatic glycerolysis of olive oil: a reaction system with major analytical problems. Biotechnol. Techn. 7 (1993) 447–452
McNeill, G.P.; Shimizu, S.; Yamane, T.: Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride. J. Am. Oil Chem. Soc., 67 (1990) 779–783
McNeill, G.P.; Shimizu, S.; Yamane, T.: High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68 (1991) 1–5
Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H.: Glycerolysis of tallow with immobilised lipase. Biotechnol. Lett. 15 (1993) 1043–1048
Ergan, F.; Trani, M.; André, G.: Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng. 35 (1990) 195–200
Macrae, A.R.: Interesterification of fats and oils. In Tramper, J., van der Plas, H.C., Linko, P. (Eds.): Biocatalysis in Organic Synthesis, pp. 195–208. Amsterdam: Elsevier Science Publishers B. V. 1985
Goderis, H.L.; Ampe, G.; Feyten, M.P.; Fouwé, B.L.; Guffens, W.M.; Van Cauwenbergh, S.M.; Tobback, P.P.: Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioeng. 30 (1987) 258–266
Heisler, A.; Rabiller, C.; Hublin, L.: Lipase catalysed isomerisation of 1,2-(2,3)-diglyceride into 1,3-diglyceride. The crucial role of water. Biotechnol. Lett. 13 (1991) 327–332
Kyotani, S.; Fukuda, H.; Nojima, Y.; Yamane, T.: Interesterification of fats and oils by immobilized fungus at constant water concentration. J. Ferm. Technol. 66 (1988) 567–575
Aldercreutz, P.; Mattiasson, B.: Aspects of biocatalyst stability in organic solvents. Biocatalysis 1 (1987) 99–108
Dias, S.F.; Vilas-Boas, L.; Cabral, J.M.S.; Fonseca, M.M.R.: Production of ethyl butyrate by Candida rugosa lipase immobilized in polyurethane. Biocatalysis 5 (1991) 21–34
Lowry, R.R.; Tinsley, I.J.: Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 53 (1976) 470–472
Fukui, S.; Tanaka, A.; Iida, T.: Immobilization of biocatalysts for bioprocesses in organic solvent media. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 21–41. Amsterdam: Elsevier Science Publishers B.V. 1987
Harman, H.H.: Modern Factor Analysis, pp. 133–135. Chicago and London: The Univ. of Chicago Press 1976
Morrison, D.F.: Multivariate Statistical Methods, pp. 226–302. Kogakusha: International Student Edition, McGraw-Hill 1967
Piggott, J.R.; Sherman, K.: Methods to aid interpretation of multidimensional data. In Piggott, J.R. (Ed.): Statistical Procedures in Food Research, pp. 181–232. London & New York: Elsevier Applied Science 1986
Powers, P.P.: Current practices and application of descriptive methods. In Piggott, J.R. (Ed.): Sensory Analysis of Foods, pp. 187–286. London & New York: Elsevier Applied Science 1988
Goldberg, M.: Thomas, D.; Legoy, M-D.: Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media. Enzyme Microb. Technol. 12 (1990) 976–981
Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Triglyceride interesterification by lipases. 2. Reaction parameters for the reduction of trisaturated impurities and diglycerides in batch reactions. Biocatalysis 5 (1991) 145–162
Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Kilogram-scale ester synthesis of acyl donor and use in lipase-catalyzed interesterifications. J. Am. Oil Chem. Soc. 69 (1992) 966–973
Valivety, R.H.; Halling, P.J.; Macrae, A.R.: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim. Biophys. Acta 1118 (1992) 218–222
Wisdom, R.A.; Dunnill, P.; Lilly, M.D.: Enzymic interesterification of fats: the effect of non-lipase material on immobilized enzyme activity. Enzyme Microb. Technol. 7 (1985) 567–572
Posorske, L.H.; LeFebvre, G.K.; Miller, C.A.; Hansen, T.T.; Glenvig, B.L.: Process considerations of continuous fat modification with an immobilized lipase. J Am. Oil Chem. Soc. 65 (1988) 922–926
Wang, Y.; Gordon, M.H.: Effect of lipid oxidation products on the esterification activity of an immobilized lipase. J. Agric. Food Chem. 39 (1991) 1693–1695
Touraine, F.; Drapron, R.: Influence of water activity on glyceride and glycol ester synthesis by lipase from Rhizopus arrhizus. Can. Inst. Food Sci. Technol. J. 21 (1988) 255–259
Leung, H.K.: Water activity and other colligative properties of foods. 1983 Winter Meeting American Society of Agricultural Engineers, Paper n∘ 83-6508, Chicago 1983
Halling, P.J.: High-affinity binding of water by proteins is similar in air and in organic solvents. Biochim. Biophys. Acta 1040 (1990) 225–228
Roig, M.G.: Sorption processes. In: Kennedy, J.F., Cabral, J.M.S. (Eds.): Recovery Processes for biological Materials, pp. 369–414. New York: John Willey & Sons 1993
Miller, D.A.; Prausnitz, J.M.; Blanch, H.W.: Kinetics of lipase-catalysed interesterification of triglycerides in cyclohexane. Enzyme Microb. Technol. 13 (1991) 98–103
Tanaka, T; Ono, E; Takinami, K..: US patent, (1981) 4,275,011
Halling, P.J.: Effects of water on equilibria catalysed by hydrolytic enzymes in biphasic reaction systems. Enzyme Microb. Technol. 6 (1984) 513–516
Halling, P.J.: Water activity in biphasic reaction systems. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 125–132. Amsterdam: Elsevier Science Publishers B.V. 1987
Benzonana, G.; Desnuelle, P.: Kinetic study of the action of pancreatic lipase on triglycerides in emulsion. Enzyme action in a heterogeneous medium. Biochim. Biophys. Acta 105 (1965) 121–136
Yamane, T.; Kojima, Y.; Ichiryu, T.; Nagata, M.; Shimizu, S.: Intramolecular esterification by lipase powder in microaqueous benzene: effect of moisture content. Biotechnol. Bioeng. 34 (1989) 838–843
Muderhwa, J.M.; Pina, M.; Graille, J.: Aptitude à la transestérification de quelques lipases régiosélectives 1–3. II.-Taux de conversion et glycérides partiels en fonction de l'activité de l'eau des biocatalysateurs. Oléagineux 43 (1988) 427–433
Svensson, I.; Adlercreutz, P.; Mattiasson, B.: Lipase-catalyzed transesterification of phosphatidylcholine at controlled water activity. J. Am. Oil Chem. Soc. 69 (1992) 986–991
Parvaresh, F.; Robert, H.; Thomas, D.; Legoy, M-D.: Gas phase transesterification reactions catalyzed by lipolytic enzymes. Biotechnol. Bioeng. 39 (1992) 467–473
Bovara, R.; Carrea, G.; Ottolina, G.; Riva, S.: Effects of water activity on V max and K M of lipase catalyzed transesterification in organic media. Biotechnol. Lett. 15 (1993) 937–942
Halling, P.J.: Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 6 (1992) 271–276
Kuhl, P.; Halling, P.J.: Salt hydrates buffer water activity during chymotrypsin-catalysed peptide synthesis. Biochim. Biophys. Acta 1078 (1991) 326–328
Kvinttingen, L.; Sjursnes, B.; Anthonsen, T.; Halling, P.: Use of salt hydrates to buffer optimal water level during lipase catalysed synthesis in organic media: a practical procedure for organic chemists. Tetrahedron 48 (1992) 2793–2082
Yang, Z.; Robb, D.A.: Use of salt hydrates for controlling activity of tyrosinase in organic solvents. Biotechnol. Tech. 7 (1993) 37–42
Brady, C.; Metcalfe, L.; Slaboszewski, D.; Frank, D.: Lipase immobilized on a hydrophobic, microporous support for the hydrolysis of fats. J. Am. Oil. Chem. Soc. 65 (1988) 917–921