Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity

Bioprocess and Biosystems Engineering - Tập 12 - Trang 327-337 - 1995
S. Ferreira-Dias1, M. M. R. da Fonseca2
1Laboratório de Eng. Bioquímica, Instituto Superior Técnico, Lisboa Codex, Portugal
2Laboratório Ferreira Lapa, Instituto Superior de Agronomia, Lisboa Codex, Portugal

Tóm tắt

The production of monoglycerides by glycerolysis of olive oil catalyzed by lipases from Candida rugosa, Chromobacterium viscosum and Rhizopus sp. immobilized in a hydrophylic polyurethane foam was investigated. The effect of the amount of aqueous phase used for foam polymerization on the competing reactions of glycerolysis and hydrolysis was studied. The highest monoglyceride production was achieved with the C. rugosa lipase which was thus selected for subsequent studies. The extent to which hydrolysis and glycerolysis occur and the influence of the initial a w of the system on both reactions were also investigated. In glycerolytic reaction systems, initial rates of fatty acid release were always higher than in hydrolytic systems. At a w values lower than 0.43, hydrolysis was completely repressed, although glycerolysis still occurred. This suggests that hydrolysis of the ester bond in the glyceride, promoted by glycerol, is the first reaction step. In glycerolysis, initial rates of FFA and DG production increased exponentially with the initial a w of the system. The lowest total conversion (in terms of % TG consumed) at 48 hours was obtained at intermediate a w values; higher conversions at extreme a w indicated an increase in hydrolytic and glycerolytic rates, at high and low a w respectively. The yield of MG increased with decreasing a w . The highest yield of MG (∼70%, w/w) was obtained at the lowest a w used (0.23). The initial a w of the reaction system is an important parameter in glycerolysis.

Tài liệu tham khảo

Sonntag, N.O.V.: Glycerolysis of fats and methyl esters — Status, review and critique. J. Am. Oil Chem. Soc. 59 (1982) 795A-802A Lauridsen, J.B.: Food emulsifier: surface activity, edibility, manufacture, composition, and application J. Am. Oil Chem. Soc. 53 (1976) 400–407 Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. J. Am. Oil Chem. Soc. 61 (1984) 776–781 Schuch, R.; Mukherjee, K.: Lipase-catalyzed reaction of fatty acids with glycerol and acylglycerols. Appl. Microbiol. Biotechnol. 30 (1989) 332–336 Hayes, D.G.; Gulari, E.: Esterification reactions of lipase in reverse micelles. Biotechnol. Bioeng. 35 (1990) 793–801 Hayes, D.G.; Gulari, E.: I-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles. Biotechnol. Bioeng. 38 (1991) 507–517 Akoh, C.; Cooper, C.; Nwosu, C.V.: Lipase G-catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J. Am. Oil Chem. Soc. 69 (1992) 257–260 Berger, M.; Schneider, M.P.: Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-racmonoacylglycerols. J. Am. Oil Chem. Soc. 69 (1992) 961–965 van der Padt, A.; Keurentjes, J.T.F.; Sewalt, J.J.W.; van Dam, E.M.; van Dorp, L.J.; van't Riet, K.: Enzymatic synthesis of monoglycerides in a membrane bioreactor with an in-line adsorption column. J. Am. Oil Chem. Soc. 69 (1992) 748 Akoh, C.: Lipase-catalyzed synthesis of partial glyceride. Biotechnol. Lett. 15 (1993) 949–954 Österberg, E.; Ristoff, C.; Holmberg, K.: Lipase catalysed hydrolysis. Tenside, Surfactants, Detergents 25 (1988) 293–297 Österberg, E.; Blomstrom, A.C.; Holmberg, K.: Lipase catalysed transesterification of unsaturated lipids in a microemulsion. J. Am. Oil Chem. Soc., 66 (1988) 1330–1333 Mukesh, D.; Bannerji, R.; Newadkar, R.; Bevinakatti, H.S.: Mathematical modelling of enzymatic butanolysis of vegetable oils. Biocatalysis 8 (1993) 191–199 Zuyi, L.; Ward, O.P.: Stability of microbial lipase in alcoholysis of fish oil during repeated enzyme use. Biotechnol. Lett. 15 (1993) 393–398 Chang, P.S.; Rhee, J.S.: Characteristics of lipase-catalyzed glycerolysis of triglyceride in AOT-isooctane reversed micelles. Biocatalysis 3 (1990) 343–355 Chang, P.S.; Rhee, J.S.; Kim, J-J.: Continuous glycerolysis of olive oil by Chromobacterium viscosum lipase immobilized on liposome in reversed micelles. Biotechnol. Bioeng. 38 (1991) 1159–1165 Ferreira-Dias, S.; Fonseca, M.M.R.: Enzyatic glycerolysis of olive oil: a reaction system with major analytical problems. Biotechnol. Techn. 7 (1993) 447–452 McNeill, G.P.; Shimizu, S.; Yamane, T.: Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride. J. Am. Oil Chem. Soc., 67 (1990) 779–783 McNeill, G.P.; Shimizu, S.; Yamane, T.: High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68 (1991) 1–5 Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H.: Glycerolysis of tallow with immobilised lipase. Biotechnol. Lett. 15 (1993) 1043–1048 Ergan, F.; Trani, M.; André, G.: Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng. 35 (1990) 195–200 Macrae, A.R.: Interesterification of fats and oils. In Tramper, J., van der Plas, H.C., Linko, P. (Eds.): Biocatalysis in Organic Synthesis, pp. 195–208. Amsterdam: Elsevier Science Publishers B. V. 1985 Goderis, H.L.; Ampe, G.; Feyten, M.P.; Fouwé, B.L.; Guffens, W.M.; Van Cauwenbergh, S.M.; Tobback, P.P.: Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioeng. 30 (1987) 258–266 Heisler, A.; Rabiller, C.; Hublin, L.: Lipase catalysed isomerisation of 1,2-(2,3)-diglyceride into 1,3-diglyceride. The crucial role of water. Biotechnol. Lett. 13 (1991) 327–332 Kyotani, S.; Fukuda, H.; Nojima, Y.; Yamane, T.: Interesterification of fats and oils by immobilized fungus at constant water concentration. J. Ferm. Technol. 66 (1988) 567–575 Aldercreutz, P.; Mattiasson, B.: Aspects of biocatalyst stability in organic solvents. Biocatalysis 1 (1987) 99–108 Dias, S.F.; Vilas-Boas, L.; Cabral, J.M.S.; Fonseca, M.M.R.: Production of ethyl butyrate by Candida rugosa lipase immobilized in polyurethane. Biocatalysis 5 (1991) 21–34 Lowry, R.R.; Tinsley, I.J.: Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 53 (1976) 470–472 Fukui, S.; Tanaka, A.; Iida, T.: Immobilization of biocatalysts for bioprocesses in organic solvent media. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 21–41. Amsterdam: Elsevier Science Publishers B.V. 1987 Harman, H.H.: Modern Factor Analysis, pp. 133–135. Chicago and London: The Univ. of Chicago Press 1976 Morrison, D.F.: Multivariate Statistical Methods, pp. 226–302. Kogakusha: International Student Edition, McGraw-Hill 1967 Piggott, J.R.; Sherman, K.: Methods to aid interpretation of multidimensional data. In Piggott, J.R. (Ed.): Statistical Procedures in Food Research, pp. 181–232. London & New York: Elsevier Applied Science 1986 Powers, P.P.: Current practices and application of descriptive methods. In Piggott, J.R. (Ed.): Sensory Analysis of Foods, pp. 187–286. London & New York: Elsevier Applied Science 1988 Goldberg, M.: Thomas, D.; Legoy, M-D.: Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media. Enzyme Microb. Technol. 12 (1990) 976–981 Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Triglyceride interesterification by lipases. 2. Reaction parameters for the reduction of trisaturated impurities and diglycerides in batch reactions. Biocatalysis 5 (1991) 145–162 Bloomer, S.; Adlercreutz, P.; Mattiasson, B.: Kilogram-scale ester synthesis of acyl donor and use in lipase-catalyzed interesterifications. J. Am. Oil Chem. Soc. 69 (1992) 966–973 Valivety, R.H.; Halling, P.J.; Macrae, A.R.: Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim. Biophys. Acta 1118 (1992) 218–222 Wisdom, R.A.; Dunnill, P.; Lilly, M.D.: Enzymic interesterification of fats: the effect of non-lipase material on immobilized enzyme activity. Enzyme Microb. Technol. 7 (1985) 567–572 Posorske, L.H.; LeFebvre, G.K.; Miller, C.A.; Hansen, T.T.; Glenvig, B.L.: Process considerations of continuous fat modification with an immobilized lipase. J Am. Oil Chem. Soc. 65 (1988) 922–926 Wang, Y.; Gordon, M.H.: Effect of lipid oxidation products on the esterification activity of an immobilized lipase. J. Agric. Food Chem. 39 (1991) 1693–1695 Touraine, F.; Drapron, R.: Influence of water activity on glyceride and glycol ester synthesis by lipase from Rhizopus arrhizus. Can. Inst. Food Sci. Technol. J. 21 (1988) 255–259 Leung, H.K.: Water activity and other colligative properties of foods. 1983 Winter Meeting American Society of Agricultural Engineers, Paper n∘ 83-6508, Chicago 1983 Halling, P.J.: High-affinity binding of water by proteins is similar in air and in organic solvents. Biochim. Biophys. Acta 1040 (1990) 225–228 Roig, M.G.: Sorption processes. In: Kennedy, J.F., Cabral, J.M.S. (Eds.): Recovery Processes for biological Materials, pp. 369–414. New York: John Willey & Sons 1993 Miller, D.A.; Prausnitz, J.M.; Blanch, H.W.: Kinetics of lipase-catalysed interesterification of triglycerides in cyclohexane. Enzyme Microb. Technol. 13 (1991) 98–103 Tanaka, T; Ono, E; Takinami, K..: US patent, (1981) 4,275,011 Halling, P.J.: Effects of water on equilibria catalysed by hydrolytic enzymes in biphasic reaction systems. Enzyme Microb. Technol. 6 (1984) 513–516 Halling, P.J.: Water activity in biphasic reaction systems. In: Laane, C.; Tramper, J.; Lilly, M.D. (Eds.): Biocatalysis in Organic Media, pp. 125–132. Amsterdam: Elsevier Science Publishers B.V. 1987 Benzonana, G.; Desnuelle, P.: Kinetic study of the action of pancreatic lipase on triglycerides in emulsion. Enzyme action in a heterogeneous medium. Biochim. Biophys. Acta 105 (1965) 121–136 Yamane, T.; Kojima, Y.; Ichiryu, T.; Nagata, M.; Shimizu, S.: Intramolecular esterification by lipase powder in microaqueous benzene: effect of moisture content. Biotechnol. Bioeng. 34 (1989) 838–843 Muderhwa, J.M.; Pina, M.; Graille, J.: Aptitude à la transestérification de quelques lipases régiosélectives 1–3. II.-Taux de conversion et glycérides partiels en fonction de l'activité de l'eau des biocatalysateurs. Oléagineux 43 (1988) 427–433 Svensson, I.; Adlercreutz, P.; Mattiasson, B.: Lipase-catalyzed transesterification of phosphatidylcholine at controlled water activity. J. Am. Oil Chem. Soc. 69 (1992) 986–991 Parvaresh, F.; Robert, H.; Thomas, D.; Legoy, M-D.: Gas phase transesterification reactions catalyzed by lipolytic enzymes. Biotechnol. Bioeng. 39 (1992) 467–473 Bovara, R.; Carrea, G.; Ottolina, G.; Riva, S.: Effects of water activity on V max and K M of lipase catalyzed transesterification in organic media. Biotechnol. Lett. 15 (1993) 937–942 Halling, P.J.: Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 6 (1992) 271–276 Kuhl, P.; Halling, P.J.: Salt hydrates buffer water activity during chymotrypsin-catalysed peptide synthesis. Biochim. Biophys. Acta 1078 (1991) 326–328 Kvinttingen, L.; Sjursnes, B.; Anthonsen, T.; Halling, P.: Use of salt hydrates to buffer optimal water level during lipase catalysed synthesis in organic media: a practical procedure for organic chemists. Tetrahedron 48 (1992) 2793–2082 Yang, Z.; Robb, D.A.: Use of salt hydrates for controlling activity of tyrosinase in organic solvents. Biotechnol. Tech. 7 (1993) 37–42 Brady, C.; Metcalfe, L.; Slaboszewski, D.; Frank, D.: Lipase immobilized on a hydrophobic, microporous support for the hydrolysis of fats. J. Am. Oil. Chem. Soc. 65 (1988) 917–921