Sản xuất peptide chống viêm cecropin A trong nội nhũ hạt gạo

Springer Science and Business Media LLC - Tập 14 - Trang 1-13 - 2014
Mireia Bundó1, Laura Montesinos2, Esther Izquierdo3, Sonia Campo1, Delphine Mieulet4, Emmanuel Guiderdoni4, Michel Rossignol3, Esther Badosa2, Emilio Montesinos2, Blanca San Segundo1, María Coca1
1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
2Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
3Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Montpellier, France
4Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, CIRAD, Montpellier, France

Tóm tắt

Cecropin A là một peptide kháng khuẩn tự nhiên có hoạt tính ly giải nhanh chóng, mạnh mẽ và bền vững đối với một loạt các tác nhân gây bệnh, do đó có tiềm năng sinh học lớn trong công nghệ sinh học. Trong nghiên cứu này, chúng tôi báo cáo một hệ thống để sản xuất cecropin A sinh học trong hạt gạo. Các cây gạo biến gen biểu hiện gen cecropin A tổng hợp được tối ưu hóa theo codon, được điều khiển bởi một trình khởi động đặc hiệu cho nội nhũ, cụ thể là trình khởi động glutelin B1 hoặc glutelin B4, đã được tạo ra. Chuỗi peptide tín hiệu từ glutelin B1 hoặc glutelin B4 đã được liên kết với đầu N của trình tự mã hóa cecropin A. Chúng tôi cũng nghiên cứu xem sự hiện diện của tín hiệu giữ lại KDEL trong lưới nội bào có ảnh hưởng đến sự định vị và tích lũy cecropin A trong tế bào hay không. Các cây gạo biến gen cho thấy sự tích hợp gen ổn định và di truyền. Chúng tôi cho thấy cecropin A tích lũy trong các thể protein lưu trữ trong nội nhũ gạo, đặc biệt là trong các thể protein loại II, cho thấy rằng các peptide tín hiệu glutelin ở đầu N đóng một vai trò quan trọng trong việc định hướng cecropin A đến bào quan này, không phụ thuộc vào việc được gán với tín hiệu giữ lại KDEL. Việc sản xuất cecropin A trong hạt gạo biến gen không ảnh hưởng đến khả năng sống của hạt giống hay sự phát triển của cây con. Hơn nữa, hạt giống cecropin A biến gen cho thấy khả năng chống lại sự nhiễm trùng của các tác nhân gây bệnh nấm và vi khuẩn (Fusarium verticillioides và Dickeya dadantii, tương ứng), cho thấy rằng cecropin A được sản xuất trong cây có hoạt tính sinh học. Hạt gạo có khả năng duy trì sản xuất cecropin A sinh học và tích lũy trong các thể protein. Hệ thống này có thể mang lại lợi ích cho việc sản xuất chất chống vi khuẩn này cho các ứng dụng tiếp theo trong bảo vệ cây trồng và bảo quản thực phẩm.

Từ khóa

#cecropin A #peptide kháng khuẩn #gạo biến gen #nội nhũ #tín hiệu KDEL

Tài liệu tham khảo

Zasloff M: Antimicrobial peptides of multicellular organisms. Nature. 2002, 415: 389-395. 10.1038/415389a. Montesinos E: Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007, 270: 1-11. 10.1111/j.1574-6968.2007.00683.x. Lopez-Garcia B, Segundo B, Coca M: Antimicrobial peptides as a promising alternative for plant disease protection. Small wonders: peptides for disease control. Edited by: Rajasekaran K, Cary JW, Jaynes J, Montesinos E. Washintong DC: ACS Books, 2012:263-294. Marcos JF, Muñoz A, Perez-Paya E, Misra S, Lopez-Garcia B: Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol. 2008, 46: 273-301. 10.1146/annurev.phyto.121307.094843. Keymanesh K, Soltani S, Sardari S: Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol. 2009, 25: 933-944. 10.1007/s11274-009-9984-7. Rydlo T, Miltz J, Mor A: Eukaryotic antimicrobial peptides: Promises and premises in food safety. J Food Sci. 2006, 71: R125-R135. 10.1111/j.1750-3841.2006.00175.x. Hancock RE, Sahl HG: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006, 24: 1551-1557. 10.1038/nbt1267. da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL: Development of novel therapeutic drugs in humans from plant antimicrobial peptides. Curr Protein Pept Sci. 2010, 11: 236-247. 10.2174/138920310791112066. Peters BM, Shirtliff ME, Jabra-Rizk MA: Antimicrobial peptides: primeval molecules or future drugs?. PLoS Pathog. 2010, 6 (10): e1001067-10.1371/journal.ppat.1001067. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R: Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003, 21: 570-578. 10.1016/j.tibtech.2003.10.002. Faye L, Gomord V: Success stories in molecular farming-a brief overview. Plant Biotechnol J. 2010, 8: 525-528. 10.1111/j.1467-7652.2010.00521.x. Stoger E, Ma JKC, Fischer R, Christou P: Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol. 2005, 16: 167-173. 10.1016/j.copbio.2005.01.005. Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM: Seed-based expression systems for plant molecular farming. Plant Biotechnol J. 2010, 8: 588-606. 10.1111/j.1467-7652.2010.00511.x. Takaiwa F, Takagi H, Hirose S, Wakasa Y: Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J. 2007, 5: 84-92. 10.1111/j.1467-7652.2006.00220.x. Hennegan K, Yang DC, Nguyen D, Wu LY, Goding J, Huang JM, Guo FL, Huang N, Watkins S: Improvement of human lysozyme expression in transgenic rice grain by combining wheat (Triticum aestivum) puroindoline b and rice (Oryza sativa) Gt1 promoters and signal peptides. Transgenic Res. 2005, 14: 583-592. 10.1007/s11248-004-6702-y. Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B, De Wilde K, Arcalis E, Bazzoni F, Santi L, Brozzetti A, Falorni A, Stoger E, Depicker A, Pezzotti M: Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J. 2011, 9: 911-921. 10.1111/j.1467-7652.2011.00605.x. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E: Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J. 2008, 6: 189-201. 10.1111/j.1467-7652.2007.00306.x. Li XX, Okita TW: Accumulation of prolamines and glutelins during rice seed development - a quantitative-evaluation. Plant Cell Physiol. 1993, 34: 385-390. Kawakatsu T, Yamamoto M, Hirose S, Yano M, Takaiwa F: Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot. 2008, 59: 4233-4245. 10.1093/jxb/ern265. Cagampang GB, Perdon AA, Juliano BO: Changes in salt-soluble proteins of rice during grain development. Phytochemistry. 1976, 15: 1425-1429. 10.1016/S0031-9422(00)88907-4. Bechtel DB, Juliano BO: Formation of protein bodies in the starchy endosperm of rice (Oryza-Sativa-L) - a reinvestigation. Ann Bot. 1980, 45: 503-509. Nagamine A, Matsusaka H, Ushijima T, Kawagoe Y, Ogawa M, Okita TW, Kumamaru T: A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant Cell Physiol. 2011, 52: 1003-1016. 10.1093/pcp/pcr053. Kumamaru T, Uemura Y, Inoue Y, Takemoto Y, Siddiqui SU, Ogawa M, Hara-Nishimura I, Satoh H: Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant Cell Physiol. 2010, 51: 38-46. 10.1093/pcp/pcp165. Ibl V, Stoger E: The formation, function and fate of protein storage compartments in seeds. Protoplasma. 2012, 249: 379-392. 10.1007/s00709-011-0288-z. Muntz K: Deposition of storage proteins. Plant Mol Biol. 1998, 38: 77-99. 10.1023/A:1006020208380. Khan I, Twyman RM, Arcalis E, Stoger E: Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J. 2012, 7: 1099-1108. 10.1002/biot.201100089. Cavallarin L, Andreu D, Segundo BS: Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact. 1998, 11: 218-227. 10.1094/MPMI.1998.11.3.218. Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E: Inhibition of plant-pathogenic bacteria by short synthetic cecropin a-melittin hybrid peptides. Appl Environ Microbiol. 2006, 72: 3302-3308. 10.1128/AEM.72.5.3302-3308.2006. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG: Sequence and specificity of 2 anti-bacterial proteins involved in insect immunity. Nature. 1981, 292: 246-248. 10.1038/292246a0. Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, San Segundo B: Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta. 2006, 223: 392-406. 10.1007/s00425-005-0069-z. Qu LQ, Takaiwa F: Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J. 2004, 2: 113-125. 10.1111/j.1467-7652.2004.00055.x. Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W: Expression of giant silkmoth cecropin-B genes in tobacco. Transgenic Res. 1995, 4: 132-141. 10.1007/BF01969415. Mills D, Hammerschlag FA, Nordeen RO, Owens LD: Evidence for the breakdown of cecropin-B by proteinases in the intercellular fluid of peach leaves. Plant Sci. 1994, 104: 17-22. 10.1016/0168-9452(94)90186-4. Muench DG, Chuong SDX, Franceschi VR, Okita TW: Developing prolamine protein bodies are associated with the cortical cytoskeleton in rice endosperm cells. Planta. 2000, 211: 227-238. 10.1007/PL00008159. Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M: Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol. 2012, 12: 159-180. 10.1186/1471-2229-12-159. Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P, Stoger E: Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol. 2004, 136: 3457-3466. 10.1104/pp.104.050153. Petruccelli S, Otegui MS, Lareu F, Dinh OT, Fitchette AC, Circosta A, Rumbo M, Bardor M, Carcamo R, Gomord V, Beachy RN: A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J. 2006, 4: 511-527. Torres E, Gonzalez-Melendi P, Stoger E, Shaw P, Twyman RM, Nicholson L, Vaquero C, Fischer R, Christou P, Perrin Y: Native and artificial reticuloplasmins co-accumulate in distinct domains of the endoplasmic reticulum and in post-endoplasmic reticulum compartments. Plant Physiol. 2001, 127: 1212-1223. 10.1104/pp.010260. Wang S, Takahashi H, Kajiura H, Kawakatsu T, Fujiyama K, Takaiwa F: Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen bet v 1 generate giant protein bodies. Plant Cell Physiol. 2013, 54: 917-933. 10.1093/pcp/pct043. Takaiwa F, Hirose S, Takagi H, Yang L, Wakasa Y: Deposition of a recombinant peptide in ER-derived protein bodies by retention with cysteine-rich prolamins in transgenic rice seed. Planta. 2009, 229: 1147-1158. 10.1007/s00425-009-0905-7. Takagi H, Saito S, Yang LJ, Nagasaka S, Nishizawa N, Takaiwa F: Oral immunotherapy against a pollen allergy using a seed-based peptide vaccine. Plant Biotechnol J. 2005, 3: 521-533. 10.1111/j.1467-7652.2005.00143.x. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H: Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A. 2007, 104: 10986-10991. 10.1073/pnas.0703766104. Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Perrin Y, Ma JKC, Fischer R, Christou P, Stoger E: A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J. 2005, 3: 115-127. Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosaka A, Tsuji NM, Shiraki K, Sekikawa K: Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr Purif. 2010, 72: 125-130. 10.1016/j.pep.2010.02.008. Yasuda H, Tada Y, Hayashi Y, Jomori T, Takaiwa F: Expression of the small peptide GLP-1 in transgenic plants. Transgenic Res. 2005, 14: 677-684. 10.1007/s11248-005-6631-4. Yasuda H, Hayashi Y, Jomori T, Takaiwa F: The correlation between expression and localization of a foreign gene product in rice endosperm. Plant Cell Physiol. 2006, 47: 756-763. 10.1093/pcp/pcj049. Takagi H, Hiroi T, Yang L, Takamura K, Ishimitsu R, Kawauchi H, Takaiwa F: Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine. 2008, 26: 6027-6030. 10.1016/j.vaccine.2008.09.019. Takagi H, Hiroi T, Hirose S, Yang L, Takaiwa F: Rice seed ER-derived protein body as an efficient delivery vehicle for oral tolerogenic peptides. Peptides. 2010, 31: 1421-1425. 10.1016/j.peptides.2010.04.032. Wakasa Y, Zhao H, Hirose S, Yamauchi D, Yamada Y, Yang LJ, Ohinata K, Yoshikawa M, Takaiwa F: Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Plant Biotechnol J. 2011, 9: 729-735. 10.1111/j.1467-7652.2010.00576.x. Takagi H, Hiroi T, Yang LJ, Tada Y, Yuki Y, Takamura K, Ishimitsu R, Kawauchi H, Kiyono H, Takaiwa F: A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci U S A. 2005, 102: 17525-17530. 10.1073/pnas.0503428102. Osusky M, Zhou GQ, Osuska L, Hancock RE, Kay WW, Misra S: Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol. 2000, 18: 1162-1166. 10.1038/81145. Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, Bardaji E, Montesinos E: A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007, 28: 2276-2285. 10.1016/j.peptides.2007.09.010. Badosa E, Ferre R, Frances J, Bardaji E, Feliu L, Planas M, Montesinos E: Sporicidal activity of synthetic antifungal undecapeptides and control of penicillium rot of apples. Appl Environ Microbiol. 2009, 75: 5563-5569. 10.1128/AEM.00711-09. Torrent M, Llop-Tous I, Ludevid M: Protein body induction: a new tool to produce and recover recombinant proteins in plants. Recombinant Proteins from Plants. Edited by: Faye L, Gomord V. Heidelberg: Humana Press, 2009:193-208. Wulff EG, Sorensen JL, Lubeck M, Nielsen KF, Thrane U, Torp J: Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol. 2010, 12: 649-657. 10.1111/j.1462-2920.2009.02105.x. Hinojo MJ, Medina A, Valle-Algarra FM, Gimeno-Adelantado JV, Jimenez M, Mateo R: Fumonisin production in rice cultures of Fusarium verticillioides under different incubation conditions using an optimized analytical method. Food Microbiol. 2006, 23: 119-127. 10.1016/j.fm.2005.03.006. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD: Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012, 13: 614-629. 10.1111/j.1364-3703.2012.00804.x. Goto M: Bacterial foot rot of rice caused by a strain of Erwinia Chrysanthemi. Phytopathology. 1979, 69: 213-216. 10.1094/Phyto-69-213. Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard J, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk P, Rueb S, Delseny M, Guiderdoni E: Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet. 2003, 106: 1396-1408. Hood EE, Gelvin SB, Melchers LS, Hoekema A: New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res. 1993, 2: 208-218. 10.1007/BF01977351. Yang LT, Ding JY, Zhang CM, Jia JW, Weng HB, Liu WX, Zhang DB: Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep. 2005, 23: 759-763. 10.1007/s00299-004-0881-0. Qu LQ, Tada Y, Takaiwa F: In situ Western hybridization: a new, highly sensitive technique to detect foreign and endogenous protein distribution in rice seeds. Plant Cell Rep. 2003, 22: 282-285. 10.1007/s00299-003-0683-9. Satoh-Cruz M, Crofts AJ, Takemoto-Kuno Y, Sugino A, Washida H, Crofts N, Okita TW, Ogawa M, Satoh H: Protein disulfide isomerase like 1–1 participates in the maturation of Proglutelin within the endoplasmic reticulum in rice endosperm. Plant Cell Physiol. 2010, 51: 1581-1593. 10.1093/pcp/pcq098. Gomez-Ariza J, Campo S, Rufat M, Estopa M, Messeguer J, San Segundo B, Coca M: Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol Plant Microbe Interact. 2007, 20: 832-842. 10.1094/MPMI-20-7-0832.