Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder
Tóm tắt
Extruded corn snacks are accepted by all human ages especially children, but they have low functional value. Therefore, corn extruded snacks contain rich nutraceuticals dried herbs including Laurus nobilis (T1), Curcuma longa (T2), Zingiber officinale Roscoe (T3), and the mixture of these herbs (T4) were manufactured and analyzed. The results declared that all the herbal extruded corn snacks had significantly higher ash, fibers, minerals, and vitamins A and B6. For minerals, the highest percent of increase compared to control was achieved by Fe, K, Ca, Zn content in order, being the highest in T4. The contents of Vitamin A and B6 were ranged from 283 to 445 IU/100 g and from 0.01 to 0.08 mg/100 g for the herbal extrudates, respectively. The increased percent in herbal corn snacks relative to control ranged from 743 to 452%, 188 to 17.6%, and from 313 to 99% for total phenolics, flavonoids, and antioxidant activity. Besides, the highest number of phenolic compounds was recorded in T4. Despite the fact that approximately all herbal extruded products had good texture and color characteristics, the best formulation was T2 and T4 corn snacks. Furthermore, the extruded products were microbiologically safe for up to 9 months. The formulation of herbal-corn snacks could fulfill consumers’ requirement for ready-to-eat-healthy foods with acceptable sensory attributes and also economically suitable for the food industry.
Tài liệu tham khảo
AACC (2000). Approved methods of American Association of Cereal Chemists, (10th ed., ). St. Paul, MN: The American Association of Cereal Chemists, Inc.
Afanas’ev, I. B., Dcrozhko, A. I., Brodskii, A. V., Kostyuk, V. A., & Potapovitch, A. I. (1989). Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochemical Pharmacology, 38(11), 1763–1769. https://doi.org/10.1016/0006-2952(89)90410-3.
Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7(7), 2121–2133. https://doi.org/10.1007/s11947-013-1225-2.
Allen, L. H. (2000). Anemia and iron deficiency: effects on pregnancy outcome. The American Journal of Clinical Nutrition, 71(5 Suppl), 1280S–4S. https://doi.org/10.1093/ajcn/71.5.1280s.
Alonso, R., Rubio, L. A., Muzquiz, M., & Marzo, F. (2001). The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals. Animal Feed Science and Technology, 94(1–2), 1–13. https://doi.org/10.1016/s0377-8401(01)00302-9
Alvarez-Martinez, L., Kondury, K. P., & Harper, J. M. (1988). A general model for expansion of extruded products. Journal of Food Science, 53(2), 609–615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x.
AOAC (2005). Association of Official Analytical Chemist, Official Methods of Analysis. 18th Edition, AOAC International, Suite 500, 481 North Frederick Avenue, Gaithersburg, Maryland 20877-2417, USA..
Aryaeian, N., & Tavakkoli, H. (2015). Ginger and its effects on inflammatory diseases. Advances in Food Technology and Nutritional Sciences, 1(4), 97–101. https://doi.org/10.17140/AFTNSOJ-1-11.
Athar, N., Hardacre, A., Taylor, G., Clark, S., Harding, R., & McLaughlin, J. (2006). Vitamin retention in extruded food products. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 19(4), 379–383. https://doi.org/10.1016/j.jfca.2005.03.004.
Awad, S. M. S. (2018). Utilization of ginger powder (Zingiber officinale roscoe) in functional food production. Australian Journal of Basic and Applied Sciences, 12(12), 121–130. https://doi.org/10.22587/ajbas.2018.12.12.20.
Ayanoğlu, F., Kaya, D. A., & Bahadirli, N. P. (2018). Effects of planting density and harvesting time on leaf and essential oil yield of bay Laurel (Laurus nobilis L.) cultured in shrub form. International conference on advanced materials and systems (ICAMS).289-249. https://doi.org/10.24264/icams-2018.VI.1
Ball, G. M. F. (2006). Vitamins in foods. In Analysis, bioavailability and stability. Boca Raton: CRC, Press. https://doi.org/10.1201/9781420026979.
Bergström, L. (1998). Nutrient losses and gains in the preparation of food. National Food Administration, Sweden: Livsmedelsverket.
Beristain-Bauza, S. D. C., Hernández-Carranza, P., Cid-Pérez, T. S., Ávila-Sosa, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Reviews International, 35(5), 407–426. https://doi.org/10.1080/87559129.2019.1573829.
Bitsch, R., & Möller, J. (1989). Analysis of B6 vitamers in foods using a modified high-performance liquid chromatographic method. Journal of Chromatography, 463(1), 207–211. https://doi.org/10.1016/s0021-9673(01)84472-1
Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., … De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules (Basel, Switzerland), 22(6). https://doi.org/10.3390/molecules22060930.
Chin Fu, Chou Shu Chen, Hsu (2021) Effects of extrusion parameters on the physicochemical characteristics of extruded barley ready‐to‐eat snacks. Journal of Food Processing and Preservation 45(10) https://doi.org/10.1111/jfpp.15788.
Dadalioglu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52(26), 8255–8260. https://doi.org/10.1021/jf049033e.
Dennison, D. B., & Kirk, J. R. (1977). Quantitative analysis of vitamin a in cereal products by high speed liquid chromatography. Journal of Food Science, 42(5), 1376–1379. https://doi.org/10.1111/j.1365-2621.1977.tb14502.x.
Dewanto, V., Wu, X., & Liu, R. H. (2002). Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry, 50(17), 4959–4964. https://doi.org/10.1021/jf0255937.
Ding, Q.-B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66(3), 283–289. https://doi.org/10.1016/j.jfoodeng.2004.03.019.
Eastell, R., Rosen, C. J., Black, D. M., Cheung, A. M., Murad, M. H., & Shoback, D. (2019). Pharmacological management of osteoporosis in postmenopausal women: An endocrine society* clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism, 104(5), 1595–1622. https://doi.org/10.1210/jc.2019-00221.
FDA (2016). U.S. Food and Drug Administration. Food Labeling: Revision of the Nutrition and Supplement Facts Labels. 2016.
Goda, S., Galal, G., & El-Shourbagy, G. (2019). Fortification of extruded snacks using some fruit peels. Zagazig Journal of Agricultural Research, 46(5), 1539–1551. https://doi.org/10.21608/zjar.2019.48171.
Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. International Journal of Food Sciences, 3(1), 1–32. https://doi.org/10.47604/ijf.1024.
Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology, 99, 284–294. https://doi.org/10.1016/j.tifs.2020.03.012.
Guenane, H., Gherib, A., Carbonell-Barrachina, Á., Cano-Lamadrid, M., Krika, F., Berrabah, M., … Bakchiche, B. (2016). Minerals analysis, antioxidant and chemical composition of extracts of Laurus nobilis from southern Algeria. Journal of Materials and Environmental Science, 7(11), 4253–4261.
Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods (Basel, Switzerland), 6(10). https://doi.org/10.3390/foods6100092.
Horvat, D., Šimić, G., Drezner, G., Lalić, A., Ledenčan, T., Tucak, M., … Zdunić, Z. (2020). Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants (Basel, Switzerland), 9(6), 527. https://doi.org/10.3390/antiox9060527.
ICMSF (2011). International commission on microbiological specification for foods. USDA information office. Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance. New York: Springer. https://doi.org/10.1007/978-1-4419-9374-8_1
Imoru, A., Onibi, G. E., & Osho, I. B. (2018). Nutritional and biochemical compositions of turmeric (Curcuma longa Linn) rhizome powder - A promising animal feed additive. International Journal of Scientific & Engineering Research, 9(1), 424–429.
Jayathilake, P. A. L., Jayasinghe, M., Walpita, J., & Dilani, K. P. R. I. (2021). Turmeric and ginger as health protective food sources - an integrative review. Vidyodaya Journal of Science., 24(02), 7–26. https://doi.org/10.31357/vjs.v24i02.5405.
Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97–111. https://doi.org/10.1080/10408690490424702.
Kannadhason, S., & Muthukumarappan, K. (2010). Effect of starch sources on properties of Extrudates containing DDGS. International Journal of Food Properties, 13(5), 1012–1034. https://doi.org/10.1080/10942910902937416.
Karuppiah, P., & Rajaram, S. (2012). Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine, 2(8), 597–601. https://doi.org/10.1016/S2221-1691(12)60104-X
Kaur, G., Singla, N., Singh, B., & Javed, M. (2018). Nutritional evaluation of cereal-pulse based extruded snacks supplemented with dehydrated herbs. Current Journal of Applied Science and Technology, 28(1), 1–14. https://doi.org/10.9734/CJAST/2018/41901.
Killeit, U. (1994). Vitamin retention in extrusion cooking. Food Chemistry, 49(2), 149–155. https://doi.org/10.1016/0308-8146(94)90151-1.
Kostadinović, L., Teodosin, S., Levi'c, J., Colovi'c, R., Banjac, V., Vukmirović, Đ., & Sredanović, S. (2014). Effect of pelleting and expanding processes on vitamin A stability in animal feeds. Journal on Processing and Energy in Agriculture, 18, 44–46.
Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food. In Principles and practices, (2nd ed., pp. 326–329). New York: Springer. https://doi.org/10.1007/978-1-4419-6488-5.
Leonard, W., Zhang, P., Ying, D., & Fang, Z. (2020). Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety, 19(1), 218–246. https://doi.org/10.1111/1541-4337.12514.
Levine, M. A. (2012). Assessing bone health in children and adolescents. Indian Journal of Endocrinology and Metabolism, 16(Suppl 2), S205–S212. https://doi.org/10.4103/2230-8210.104040.
Limsangouan, N., Takenaka, M., Sotome, I., Nanayama, K., Charunuch, C., & Isobe, S. (2010). Functional properties of cereal and legume based extruded snack foods fortified with by-products from herbs and vegetables. Kasetsart Journal - Natural Science, 44, 271–279.
Liu, S. Q., Cao, M. L., & Dong, S. L. (2008). Electrochemical and ultraviolet-visible spectroscopic studies on the interaction of deoxyribonucleic acid with vitamin B6. Bioelectrochemistry, 74(1), 164–169. https://doi.org/10.1016/j.bioelechem.2008.07.004.
Liu, Y., Hsieh, F., Heymann, H., & Huff, H. E. (2000). Effect of process conditions on the physical and sensory properties of extruded oat-corn puff. Journal of Food Science, 65(7), 1253–1259. https://doi.org/10.1111/j.1365-2621.2000.tb10274.x.
Lotfi Shirazi, S., Koocheki, A., Milani, E., & Mohebbi, M. (2020). Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. Journal of Food Science and Technology, 57(6), 2169–2181. https://doi.org/10.1007/s13197-020-04252-5.
Lucas, B. F., de Morais, M. G., Santos, T. D., & Costa, J. A. V. (2017). Effect of Spirulina addition on the physicochemical and structural properties of extruded snacks. Food Science And Technology, 37(spe), 16–23. https://doi.org/10.1590/1678-457x.06217.
Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T., & Li, H.-B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods (Basel, Switzerland), 8(6), 185. https://doi.org/10.3390/foods8060185.
Marchev, A., Georgiev, V., Ivanov, I., Badjakov, I., & Pavlov, A. (2011). Two-phase temporary immersion system for agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa mill.). Biotechnology Letters, 33(9), 1873–1878. https://doi.org/10.1007/s10529-011-0625-5.
Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20(1), 3–18. https://doi.org/10.1016/j.jtemb.2006.01.006.
Mazumder, P., Roopa, B. S., & Bhattacharya, S. (2007). Textural attributes of a model snack food at different moisture contents. Journal of Food Engineering, 79(2), 511–516. https://doi.org/10.1016/j.jfoodeng.2006.02.011.
Minweyelet, M., Solomon, W. K., & Bultosa, G. (2021). Effects of extrusion operating conditions and blend proportion on the physicochemical and sensory properties of teff-rice blend extruded products. Food Research, 5(2), 173–183. https://doi.org/10.26656/fr.2017.5(2).467.
Mohammed, R. R., Omer, A. K., Yener, Z., Uyar, A., & Ahmed, A. K. (2021). Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Annals of Medicine and Surgery, 61, 188–197. https://doi.org/10.1016/j.amsu.2020.11.051.
Mokrzycki, W. S., & Tatol, M. (2012). Color difference Delta E-A survey. Machine Graphics and Vision, 20, 383–411.
Morsy, O. M., Sharoba, A. M., & EL-Desouky, A.I., Bahlol, H.E.M., & Abd El Mawla, E., M. (2014). Production and evaluation of some extruded food products using spirulina algae. Annals of Agriculture Science, Moshtohor, 52(4), 495–510. https://doi.org/10.21608/assjm.2014.111899.
Nobile-Correa, D. P., Restrepo-Osorio, J., Zúñiga, O., & Sánchez-Andica, R. A. (2020). Determination of nutritional value of turmeric flour and the antioxidant activity of Curcuma longa rhizome extracts from agroecological and conventional crops of Valle del Cauca-Colombia. Revista Colombiana de Química, 49(1), 26–32. https://doi.org/10.15446/rev.colomb.quim.v1n49.79334.
Onwuka, G. J. (2005). Food Analysis and instrumentation theory and practice, (pp. 64–76). Lagos, Nigeria: Naphthali Prints.
Petrova, T., Ruskova, M., Tzonev, P., Zsivanovits, G., & Penov, N. (2010). AIP Conference Proceedings, 1203, 1031. https://doi.org/10.1063/1.3322303.
Prabha, K., Ghosh, P., Abdullah, S., Joseph, R. M., Krishnan, R., Rana, S. S., & Pradhan, R. C. (2021). Recent development, challenges, and prospects of extrusion technology. Future Foods, 3, 100019. https://doi.org/10.1016/j.fufo.2021.100019.
Qian, B., Shen, S., Zhang, J., & Jing, P. (2017). Effects of vitamin B6 deficiency on the composition and functional potential of T cell populations. Journal of Immunology Research, 2017, 2197975. https://doi.org/10.1155/2017/2197975.
Raduly, F. M., Raditoiu, V., Raditoiu, A., & Purcar, V. (2021). Curcumin: Modern applications for a versatile additive. Coatings, 11(5), 519. https://doi.org/10.3390/coatings11050519.
Raja, W. H., Kumar, S., Bhat, Z. F., & Kumar, P. (2014). Effect of ambient storage on the quality characteristics of aerobically packaged fish curls incorporated with different flours. Springer Plus, 3(1), 106–115. https://doi.org/10.1186/2193-1801-3-106.
Rathore, S., Siddiqui, M., Sharma, P., Devi, S., Nagar, J., & Khalid, M. (2020). Curcumin: A review for health benefits. International Journal of Science and Research (IJSR), 7, 273–290.
Reitzer-Bergaentzle, M., Marchioni, E., & Hasselmann, C. (1993). HPLC determination of vitamin B6 in foods after pre-column derivatization of free and phosphorylated vitamers into pyridoxol. Food Chemistry, 48(3), 321–324. https://doi.org/10.1016/0308-8146(93)90149-A.
Repo-Carrasco-Valencia, R., Acevedo de La Cruz, A., Icochea Alvarez, J. C., & Kallio, H. (2009). Chemical and functional characterization of Kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 64(2), 94–101. https://doi.org/10.1007/s11130-009-0109-0.
Saalia, F. K., & Phillips, R. D. (2011). Degradation of aflatoxins by extrusion cooking: Effects on nutritional quality of extrudates. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 44(6), 1496–1501. https://doi.org/10.1016/j.lwt.2011.01.021.
Saeleaw, M., Dürrschmid, K., & Schleining, G. (2012). The effect of extrusion conditions on mechanical-sound and sensory evaluation of rye expanded snack. Journal of Food Engineering, 110(4), 532–540. https://doi.org/10.1016/j.jfoodeng.2012.01.002.
Salfinger Y., and Tortorello M.L., 2015, Compendium of Methods for the Microbiological Examination of Foods, 5th Ed., American Public Health Association, Washington, D.C.
Salmerón-Manzano, E., Garrido-Cardenas, J. A., & Manzano-Agugliaro, F. (2020). Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health, 17(10), 3376. https://doi.org/10.3390/ijerph17103376.
Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276 https://doi.org/10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9.
Santana, Á. L., Zabot, G. L., Osorio-Tobón, J. F., Johner, J. C. F., Coelho, A. S., Schmiele, M., … Meireles, M. A. A. (2017). Starch recovery from turmeric wastes using supercritical technology. Journal of Food Engineering, 214, 266–276. https://doi.org/10.1016/j.jfoodeng.2017.07.010.
Shah, F.-U.-H., Sharif, M. K., Bashir, S., & Ahsan, F. (2019). Role of healthy extruded snacks to mitigate malnutrition. Food Reviews International, 35(4), 299–323. https://doi.org/10.1080/87559129.2018.1542534.
Shah, F.-U.-H., Sharif, M. K., Butt, M. S., & Shahid, M. (2017). Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks. Journal of Texture Studies, 48(3), 221–230. https://doi.org/10.1111/jtxs.12231.
Shruthi, V. H., Hiregoudar, S., & Nidoni, U. (2019). Evaluation of textural properties of corn based extruded products. Plant Archives, 19(2), 2405–2410.
Singkhornart, S., Edou-ondo, S., & Ryu, G.-H. (2014). Influence of germination and extrusion with CO(2) injection on physicochemical properties of wheat extrudates. Food Chemistry, 143, 122–131. https://doi.org/10.1016/j.foodchem.2013.07.102.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.
Sorolla, M. A., Rodríguez-Colman, M. J., Tamarit, J., Ortega, Z., Lucas, J. J., Ferrer, I., … Cabiscol, E. (2010). Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radical Biology & Medicine, 49(4), 612–621. https://doi.org/10.1016/j.freeradbiomed.2010.05.016.
Statistical Analysis System [SAS] (2017). User's guide. Statistic. Cary, NC: SAS Institute Inc.
Stone, M. S., Martyn, L., & Weaver, C. M. (2016). Potassium intake, bioavailability, hypertension, and glucose control. Nutrients, 8(7), 444. https://doi.org/10.3390/nu8070444.
Syed, A., Naik, H. R., & Hussain, Z. S. (2019). Storage stability studies of corn based rice bran incorporated extruded snacks. Journal of Pharmacognosy and Phytochemistry, 8(2), 492–494.
Tanweer, S., Shahzad, A., & Ahmed, W. (2014). Compositional and mineral profiling of zingiber officinale. Pakistan Journal of Food Sciences, 24(1), 21–26.
Tejavathi, D. H., Sujatha, B. S., & Karigar, C. S. (2020). Physicochemical properties of starch obtained from Curcuma karnatakensis - A new botanical source for high amylose content. Heliyon, 6(1), e03169. https://doi.org/10.1016/j.heliyon.2020.e03169.
Tohma, H., Gülçin, İ., Bursal, E., Gören, A. C., Alwasel, S. H., & Köksal, E. (2017). Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. Journal of Food Measurement & Characterization, 11(2), 556–566. https://doi.org/10.1007/s11694-016-9423-z.
Turner, R. (1995). BottomLine in feed processing: Achieving optimum pellet quality. Feed Management, 46(12), 30–33.
Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. granny smith) slices. Food Chemistry, 132(1), 51–59. https://doi.org/10.1016/j.foodchem.2011.10.029.
Vijayarani, D., Ponnalaghu, S., & Rajathivya, J. (2012). Development of value added extruded product using Spirulina. International Journal of Health Sciences and Research, 2(4), 42–47.
Wani, S. A., Bhat, T. A., Ganie, N. A., & Kumar, P. (2020). Impact of storage and packaging material on the nutritional, product properties and microbial count of extruded snacks. Current Nutrition and Food Science, 16(4), 592–600. https://doi.org/10.2174/1573401315666190126114847.
WHO (2019). global report on traditional and complementary medicine. Geneva: World Health Organization Licence: CC BY-NC-SA 3.0 IGO.
Wójtowicz, A., Lisiecka, K., Mitrus, M., Nowak, G., Golian, M., Oniszczuk, A., … Combrzyński, M. (2019). Physical properties and texture of gluten-free snacks supplemented with selected fruit additions. International Agrophysics, 4(33), 407–416. https://doi.org/10.31545/intagr/112563.
Yadav, U., Singh, R. R. B., & Arora, S. (2018). Evaluation of quality changes in nutritionally enriched extruded snacks during storage. Journal of Food Science and Technology, 55(10), 3939–3948. https://doi.org/10.1007/s13197-018-3319-3.
Yang, P., Wang, H., Zhu, M., & Ma, Y. (2020). Evaluation of extrusion temperatures, pelleting parameters, and vitamin forms on vitamin stability in feed. Animals: An Open Access Journal from MDPI, 10(5), 894. https://doi.org/10.3390/ani10050894.
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/s0308-8146(98)00102-2