Process upsets in a full-scale anaerobic digestion bioreactor: over-acidification and foam formation during biogas production

Lucie Moeller1, Andreas Zehnsdorf1
1Centre for Environmental Biotechnology, UFZ—Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318, Leipzig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kleyböcker A, Liebrich M, Verstraete W, Kraume M, Würdemann H (2012) Early warning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters. Bioresource Technol 123:534–541. doi: 10.1016/j.biortech.2012.07.089

Moeller L, Görsch K (2015) Foam formation in full-scale biogas plants processing biogenic waste. Energy Sustain Soc 5:1. doi: 10.1186/s13705-014-0031-7

Lienen T, Kleyböcker A, Brehmer M, Kraume M, Moeller L, Görsch K, Würdemann H (2013) Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy, Sustain Soc 3:20. doi: 10.1186/2192-0567-3-20

Marchaim U, Krause K (1993) Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technol 43:195–203. doi: 10.1016/0960-8524(93)90031-6

Lin C-Y (1992) Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Wat Res 26:177–183. doi: 10.1016/0043-1354(92)90217-R

Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresource Technol 99:4044–4064. doi: 10.1016/j.biortech.2007.01.057

Hernandez JE, Edyvean RGJ (2008) Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge. J Hazard Mater 160:20–28. doi: 10.1016/j.jhazmat.2008.02.075

Kougias PG, Boe K, O-Thong S, Kristensen LA, Angelidaki I (2014) Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Sci Technol 69:889–895. doi: 10.2166/wst.2013.792

Moeller L, Krieg F, Zehnsdorf A, Mueller RA (2016) How to avoid foam formation in biogas plants by coarse grain anaerobic digestion. Chem Eng Technol 39:673–679. doi: 10.1002/ceat.201500300

Stoyanova E, Forsthuber B, Pohn S, Schwarz C, Fuchs W, Bochmann G (2014) Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation 25:277–289. doi: 10.1007/s10532-013-9659-9

Suhartini S, Heaven S, Banks CJ (2014) Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. Bioresource Technol 152:202–211. doi: 10.1016/j.biortech.2013.11.010

Moeller L, Lehnig M, Schenk J, Zehnsdorf A (2015) Foam formation in biogas plants caused by anaerobic digestion of sugar beet. Bioresource Technol 178:270–277. doi: 10.1016/j.biortech.2014.09.098

Pagilla KR, Craney KC, Kido WH (1997) Causes and effects of foaming in anaerobic sludge digesters. Water Sci Tech 36:463–470. doi: 10.1016/S0273-1223(97)00556-8

Moeller L, Goersch K, Neuhaus J, Zehnsdorf A, Mueller RA (2012) Comparative review of foam formation in biogas plants and ruminant bloat. Energy Sustain Soc 2:12. doi: 10.1186/2192-0567-2-12

Moeller L, Eismann F, Wißmann D, Nägele H-J, Zielonka S, Müller RA, Zehnsdorf A (2015) Innovative test method for the estimation of the foaming tendency of substrates for biogas plants. Waste Manage 41:39–49. doi: 10.1016/j.wasman.2015.03.031

Boe K, Batstone DJ, Steyer J-P, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980. doi: 10.1016/j.watres.2010.07.043

Zickefoose C, Hayes RB (1976) Anaerobic sludge digestion: operations manual, EPA 430/9-76-001

Lili M, Biró G, Sulyok E, Petis M, Borbély J, Tamás J (2011) Novel approach on the basis of FOS/TAC method. Analele Universităţii din Oradea, Fascicula: Protecţia Mediului 17:713–718, http://protmed.uoradea.ro/facultate/anale/protectia_mediului/2011B/im/15.%20Mezes%20Lili.pdf

Hecht C, Griehl C (2009) Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresource Technol 100:654–658. doi: 10.1016/j.biortech.2008.07.034

Chynoweth D, Svoronos S, Lyberatos G, Harman J, Pullammanappallil P, Owens J, Peck M (1994) Real-time expert system control of anaerobic digestion. Water Sci Technol 30:21–29

Archer DB, Hilton MG, Adams P, Wiecko H (1986) Hydrogen as a process control index in a pilot scale anaerobic digester. Biotechnol Lett 8:197–202. doi: 10.1007/BF01029380

Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archea. Microbiol 150:3527–3546. doi: 10.1099/mic.0.27303-0

Zumpft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

Sheng K, Chen X, Pan J, Kloss R, Wei Y, Ying Y (2013) Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Eng 116:205–212. doi: 10.1016/j.biosystemseng.2013.08.005

Zhang B, Cai W, He P (2007) Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J Environm Sci 19:244–249. doi: 10.1016/S1001-0742(07)60040-0

Kleyböcker A, Lienen T, Liebrich M, Kasina M, Kraume M, Würdemann H (2014) Application of an early warning indicator and CaO to maximize the time-space-yield of a completely mixed waste digester using rape seed oil as co-substrate. Waste Manage 34:661–668. doi: 10.1016/j.wasman.2013.11.011

Hall JW, Majak W (1989) Plant and animal factors in legume bloat. In: Cheeke PR (ed) Toxicants of plant origin, vol 3, Proteins and amino acids. CRC Press, Boca Raton, FL, USA, pp 93–106