Phân tích quy trình chưng cất điều chỉnh áp suất cho việc tách biệt hỗn hợp axit formic-nước

Chemical Papers - Tập 75 - Trang 599-609 - 2020
Badra Mahida1, Hassiba Benyounes1, Weifeng Shen2
1Oran Laboratory of Physical Chemistry of Materials, Catalysis and Environment, U.S.T., Oran, Algeria
2School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People’s Republic of China

Tóm tắt

Việc tách biệt hỗn hợp nhị phân axit formic-nước là rất khó khăn bằng phương pháp chưng cất thông thường do nó hình thành azeotrop sôi mạnh ở áp suất khí quyển. Việc tách biệt thông qua việc điều chỉnh áp suất cột là khả thi nếu áp suất có ảnh hưởng đáng kể đến thành phần của azeotrop. Các nghiên cứu trước đây về cân bằng hơi-lỏng của hệ nhị phân axit formic-nước cho thấy rằng azeotrop nhạy cảm với áp suất. Nghiên cứu này nhằm mục đích khám phá ảnh hưởng của nồng độ axit formic trong hỗn hợp nhị phân axit formic-nước đến khả năng tách biệt, sử dụng hai cột chưng cất hoạt động ở các áp suất khác nhau, được xác định bởi sự biến đổi thành phần của azeotrop với áp suất. Quy trình bao gồm hai cột, cột đầu tiên hoạt động ở áp suất 1.96 bar để thu hồi nước và cột thứ hai hoạt động ở áp suất 0.267 bar để thu hồi axit formic. Các tham số vận hành tốt nhất đã được xác định để đạt được tỷ lệ thu hồi cao axit formic.

Từ khóa

#axit formic #nước #azeotrop #chưng cất điều chỉnh áp suất #thu hồi

Tài liệu tham khảo

Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 21(1):116–128. https://doi.org/10.1002/aic.690210115 Abu-Eishah SI, Luyben WL (1985) Design and control of two-column azeotropic distillation system. Ind Eng Chem Proc Des Dev 24:132–140. https://doi.org/10.1021/i200028a024 Berg L, Yeh A (1987) Dehydration of formic acid by extractive distillation. United States Patent. Serial N°4,642,166. Cao Y, Hu J, Jia H, Bu G, Zhu Z, Wang Y (2017) Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control. J Process Contr 49:9–25. https://doi.org/10.1016/j.jprocont.2016.11.005 Chalov NV, Aleksandrova OA (1957) Liquid-vapor phase equilibrium of formic acid-water at normal and low pressures. Gidroliz Lesokhim Prom 10:15–17 Chang T, Shih TT (1989) Development of an azeotropic distillation scheme for purification of tetrahydrofuran. Fluid Phase Equilib 52:161–168. https://doi.org/10.1016/0378-3812(89)80322-X Frank TC (1997) Break azeotropes with pressure-swing sensitive distillation. Chem Eng Prog 12:52–63 Fulgueras AM, Poudel J, Kim DS, Cho J (2016) Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water ethylenediamine. Korean J Chem Eng 33:46–56. https://doi.org/10.1007/s11814-015-0100-4 Furter WF (1977) Extractive distillation by salt effect. Can J Chem Eng 55:229–239 Gilburd MM, Moin FB, Pazdersky YuA (1984) Equilibre de phases liquide-vapeur dans le système eau-acide formique aux pressions élevées. Zh Prikl Khim 57:915–917 Gmehling J, Onken U (1982) Vapor-liquid equilibrium data collection. Dechema Chem Data Ser 1(5):693 Herbinet O, Battin-Leclerc F (2011) Detailed product analysis during the flow temperature oxidation of n-butane. Phys Chem Phys 13:296–308. https://doi.org/10.1039/C0CP00539H Ito T, Yoshida F (1963) Vapor-liquid equilibria of water-lower fatty acid systems: water-formic acid, water acetic acid and water-propionic acid. J Chem Eng Data 8:315 Lewis WK (1928) Dehydrating alcohol and the like. US. Patent Office, Serial N° 1,676,700. Li W, Zhong L, He Y, Meng J, Yao F, Guo Y, Xu C (2015) Multiple steady-states analysis and unstable operating point stabilization in homogeneous azeotropic distillation with intermediate entrainer. Ind Eng Chem Res 54:7668–7686. https://doi.org/10.1021/acs.iecr.5b00572 Li X, Yang X, Wang S, Yang J, Wang L, Zhu Z, Cui P, WangY GJ (2019a) Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous. Process Saf Environ Prot 128:85–94. https://doi.org/10.1016/j.psep.2019.05.040 Li X, Gen X, Cui P, Yang J, Zhu Z, Wang Y (2019b) Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology. Appl Therm Eng 154:519–529. https://doi.org/10.1016/j.applthermaleng.2019.03.118 Liadosa E, Montón JB, Burguet M (2011) Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chem Eng Proc 7:1266–1274. https://doi.org/10.1016/j.cep.2011.07.010 Luyben WL (2008) Comparison of extractive distillation and pressure swing distillation for acetone-methanol separation. Ind Eng Chem Res 47:2696–2707. https://doi.org/10.1021/ie701695u Luyben WL (2013) Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput Chem Engin 50:1–7. https://doi.org/10.1016/j.compchemeng.2012.10.014 Luyben WL (2015) Improved design of an extractive distillation system with an intermediate-boiling solvent. Sep Purif Technol 156:336–347. https://doi.org/10.1016/j.seppur.2015.10.020 Luyben WL (2017) Control of a triple-column pressure-swing distillation process. Sep Purif Technol 174:232–244. https://doi.org/10.1016/j.seppur.2016.10.020 Mangili PV (2020) Thermoeconomic and environmental assessment of pressure-swing distillation schemes for the separation of di-n-propyl ether and n-propyl alcohol. Chem Eng Process 148:107816. https://doi.org/10.1016/j.cep.2020.107816 Phimister JR, Seider WD (2000) Semi-continuous, pressure swing distillation. Ind Eng Chem Res 39:122–130. https://doi.org/10.1021/ie9904302 Shi P, Zhang Q, Zeng A, Ma Y, Yuan X (2020) Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling Azeotrope. Energy 196:117095. https://doi.org/10.1016/j.energy.2020.117095 Takagi S (1939) Boiling points of the system of formic acid and water. Bull Chem Soc Jpn 14:508–509. https://doi.org/10.1246/bcsj.14.508 Wang SJ, Huang K (2012) Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation using p-xylene as an entrainer. Chem Eng Process 60:65–76. https://doi.org/10.1016/j.ces.2004.06.041 Wang N, Ye Q, Ren X, Chen L, Zhang H, Fan Y, Cen H, Zhong J (2020) Performance enhancement of heat pump with preheater-assisted pressure-swing distillation process. Ind Eng Chem Res 59:4742–4755. https://doi.org/10.1021/acs.iecr.9b06918 Wei H, Wang F (2013) Design and control of dimethyl carbonate−methanol separation via pressure-swing distillation. Ind Eng Chem Res 33:11463–11478. https://doi.org/10.1021/ie3034976