Problems Around Polynomials: The Good, The Bad and The Ugly...

Arnold Mathematical Journal - Tập 1 Số 1 - Trang 91-99 - 2015
Boris Shapiro1
1Department of Mathematics, Stockholm University, 10691 Stockholm, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brändén, P., Krasikov, I., Shapiro, B.: Elements of Pólya–Schur theory in finite diffrence setting (2012). arXiv:1204.2963

Choi, M.-D., Lam, T.-Y., Reznick, B.: Real zeros of positive definite forms. I. Math. Z. 171, 1–26 (1980)

De Loera, J.A., McAllister, T.B.: Vertices of Gelfand–Tsetlin polytopes (2003). arXiv:math/0309329

Fisk, S.: Polynomials, roots, and interlacing (2006). arXiv:math/0612833

Forsgård, J., Kostov, Vl., Shapiro, B.: Could René Descartes have known this? (2015). arXiv:1501.00856

Forsgård, J.: Shapiro, B.: Discriminant amoebas, complex zero decreasing sequences, and the Karlin problem (2015). (In preparation)

Gabrielov, A., Novikov, D., Shapiro, B.: Mystery of point charges. Proc. Lond. Math. Soc. (3) 95(2), 443–472 (2007)

Grabiner, D.J.: Descartes’ rule of signs: another construction. Am. Math. Mon. 106, 854–856 (1999)

Jensen, J.L.W.V.: Recherches sur la théorie des équations. Acta Math. 36, 181–195 (1913)

Khovanskii, A.G.: Fewnomials. In: AMS Translated Monographs, vol. 88, pp. viii+139. USA (1991)

Killian, K.: A remark on Maxwell’s conjecture for planar charges. Complex Var. Elliptic Equations 54(12), 1073–1078 (2009)

Kostov, V., Shapiro, B., Tyaglov, M.: Maximal univalent disks of real rational functions and Hermite–Biehler polynomials. Proc. Am. Math. Soc. 139(5), 1625–1635 (2011)

Langer, R.E.: On the zeros of exponential sums and integrals. Bull. Am. Math. Soc. 37, 213–239 (1931)

Maxwell, J.C.: A treatise on electricity and magnetism. In: Republication of the 3rd revised edition, vol. 1. Dover Publ. Inc., (1954)

Oleinik, O.A., Petrovskii, I.G.: On the topology of real algebraic hypersurfaces (Russian). Izv. Acad. Nauk SSSR 13, 389–402 (1949). [English transl.: Am. Math. Soc. Transl. 7, 399–417 (1962)]

Peretz, R.: Application of the argument principle to Maxwell’s conjecture for three point charges. Complex Var. Elliptic Equations 58(5), 1–11 (2013)

Schmidt, W.M.: The zero multiplicity of linear recurrence sequences. Acta Math. 182, 243–282 (1999)

Shapiro, B., Shapiro, M.: A few riddles behind Rolle’s theorem. Am. Math. Mon. 119(9), 787–793 (2012)

Tyaglov, M.: On the number of real critical points of logarithmic derivatives and the Hawaii conjecture. J. Anal. Math. 114, 1–62 (2011)

Wang, Y.: Equilibrium points of potential fields produced by positive point charges. http://ccs.math.ucsb.edu/senior-thesis/YifeiWang (2012)