Thăm Dò Phân Tử Đơn Và Hạt Nano Đơn Bằng Phương Pháp Tán Xạ Raman Cường Cường Độ Bề Mặt

American Association for the Advancement of Science (AAAS) - Tập 275 Số 5303 - Trang 1102-1106 - 1997
Shuai Nie1, Steven R. Emory1
1Department of Chemistry, Indiana University, Bloomington IN 47405, USA

Tóm tắt

Việc phát hiện quang học và phân tích quang phổ của các phân tử đơn lẻ và các hạt nano đơn đã được thực hiện ở nhiệt độ phòng thông qua việc sử dụng tán xạ Raman cường cường độ bề mặt. Các hạt nano colloidal bạc đơn lẻ đã được sàng lọc từ một quần thể lớn không đồng nhất dựa trên các đặc tính phụ thuộc kích thước đặc biệt và sau đó được sử dụng để khuếch đại các dấu hiệu quang phổ của các phân tử hấp phụ. Đối với các phân tử đơn lẻ rhodamine 6G hấp phụ trên các hạt nano đã chọn, các hệ số khuếch đại Raman nội tại đạt mức từ 1014 đến 1015, lớn hơn nhiều so với các giá trị trung bình của quần thể thu được từ các phép đo thông thường. Sự khuếch đại to lớn này dẫn tới các tín hiệu dao động Raman có cường độ mạnh hơn và ổn định hơn so với huỳnh quang của phân tử đơn.

Từ khóa

#các phân tử đơn lẻ #hạt nano đơn #tán xạ Raman cường độ bề mặt #rhodamine 6G #quang học #phân tích quang phổ #hệ số khuếch đại Raman #huỳnh quang.

Tài liệu tham khảo

For recent reviews see W. E. Moerner Science 265 46 (1994)

J. L. Skinner and W. E. Moerner J. Phys. Chem. 100 13251 (1996).

Orrit M., Bernard J., Personov R. I., J. Phys. Chem. 97, 10256 (1993).

Guttler F., Irngartinger T., Plakhotnik T., Renn A., Wild U. P., Chem. Phys. Lett. 217, 393 (1994).

Shera E. B. Seitzinger N. K. Davis L. M. Keller R. A. Soper S. A. ibid. 174 553 (1990);

Barnes M. D. , Ng K. C. , Whitten W. B. , Ramsey J. M., Anal. Chem. 65, 2360 (1993).

Eigen M. Rigler R. Proc. Natl. Acad. Sci. U.S.A. 91 5740 (1994);

10.1126/science.7973650

Betzig E. Chichester R. J. Science 262 1422 (1993);

Xie X. S. and , Dunn R. C., ibid. 265, 361 (1994).

Ambrose W. P. Goodwin P. M. Martin J. C. Keller R. A. ibid. 265 364 (1994);

Phys. Rev. Lett. 72, 160 (1994).

Trautman J. K. Macklin J. J. Brus L. E. Betzig E. Nature 369 40 (1994);

10.1126/science.272.5259.255

10.1073/pnas.93.13.6264

Keller R. A. et al. Appl. Spectrosc. 50 12A 7 (1996);

Nie S. and , Zare R. N., Annu. Rev. Biophys. Biomol. Struct., in press.

10.1038/374555a0

Schmidt Th. Schutz G. J. Baumgartner W. Gruber H. J. Schindler H. Proc. Natl. Acad. Sci. U.S.A. 93 2926 (1996);

Xue Q. and , Yeung E. S., Nature 373, 681 (1995);

Castro A. , Fairfield F. R. , Shera E. B., Anal. Chem. 65, 849 (1993);

Haab B. B. and , Mathies R. A., ibid. 67, 3253 (1995).

Fan F.-R. F. Bard A. J. Science 267 871 (1995);

Collinson M. M. and , Wightman R. M., ibid. 268, 1883 (1995).

For reviews see M. Moskovits Rev. Mod. Phys. 57 783 (1985)

A. Otto I Mrozek H. Grabhorn W. Akemann J. Phys. Condens. Matter 4 1143 (1992)

G. C. Schatz Acc. Chem. Res. 17 370 (1984).

Meyers A. B. Tchenio P. Zgierski M. Z. Moerner W. E. J. Phys. Chem. 98 10377 (1994);

Fleury J. , Tamarat Ph. , Lounis B. , Bernard J. , Orrit M., Chem. Phys. Lett. 236, 87 (1995).

Kneipp K. et al. abstract 24 presented at the 23rd Annual Conference of the Federation of Analytical Chemistry and Spectroscopy Societies Kansas City MO 29 September to 4 October 1996.

A 250-μl aliquot of Ag colloid prepared by the procedure of P. C. Lee and D. Meisel [ J. Phys. Chem. 86 3391 (1982)] was incubated with R6G and ∼1 mM NaCl in a 1.5-ml plastic microcentrifuge tube. Glass containers should be avoided because of R6G adsorption on glass surfaces. At the electrolyte concentrations used the Ag colloid was activated but not aggregated after an extended incubation time of ∼3 hours at room temperature. The amount of free R6G in solution was experimentally determined to be ∼20% by centrifugation of the Ag particles and fluorescence measurement of the supernatant solution. This result is in agreement with the calculated value (∼10 to 20%) based on the equilibrium binding constant 1.8 × 10 −9 M (19). Bulk R6G concentrations from 10 −7 to 10 −11 M were calibrated by fluorescence measurement in the absence of Ag colloids. The order speed and buffer volume of the colloid-analyte mixing process did not make measurable differences indicating that equilibrium adsorption conditions were reached in our experiment.

Freeman R. G. et al. Science 267 1629 (1995);

Chumanov G. , Sokolov K. , Gregory B. W. , Cotton T. M., J. Phys. Chem. 99, 9466 (1995).

Hildebrandt P., Stockburger M., J. Phys. Chem. 88, 5935 (1984).

In this integrated microscope ultrasensitive optical imaging and spectroscopy provided molecular information and AFM resolved the shape and size of individual nanoparticles. The microscope side port was coupled to a high-throughput single-stage spectrograph and a back-illuminated charge-coupled device (CCD) detector for spectroscopy. The microscope front was attached to a video-rate intensified CCD for wide-field imaging of single nanoparticles with epi- or evanescent-wave laser excitation. A tapping-mode AFM scanning head was mounted directly on the microscope stage for topographic imaging at nanometer-scale resolution. When coupled with a video data acquisition system this apparatus allowed digital movies to be made of single nanoparticles at 30 frames per second. Detailed instrument diagram and specifications are available upon request.

This question can be addressed by using near-field scanning optical microscopy to image nanoparticle aggregates at a resolution of 50 to 100 nm. Recent research shows that both surface and resonance-enhanced Raman spectra can be obtained with a near-field fiber probe in nanometer domains [S. R. Emory and S. Nie in International Conference on Raman Spectroscopy S. A. Asher and P. B. Stein Eds. (Wiley New York 1996) pp. 1176–1177; S. Webster D. A. M. Smith M. W. Ayad K. Kershaw D. N. Batchelder ibid. pp. 1146–1147].

Jakobi H., Kuhn H., Ber. Bunsenges. Phys. Chem. 66, 46 (1962).

Kneipp K., et al., Phys. Rev. Lett. 76, 2444 (1996).

Golab J. T., Sprague J. R., Carron K. T., Schatz G. C., Van Duyne R. P., J. Chem. Phys. 88, 7942 (1988).

Li W. Virtanen J. A. Penner R. M. J. Phys. Chem. 96 6529 (1992);

ibid. 98, 11751 (1994).

Martin C. R. Science 266 1961 (1994);

Acc. Chem. Res. 28, 61 (1995).

Van Duyne R. P., Hulteen J. C., Treichel D. A., J. Chem. Phys. 99, 2101 (1993).

Xiao T. Ye Q. Sun L. J. Phys. Chem. in press.

Alivisatos A. P. Science 271 933 (1996);

10.1021/jp9535506

Nirmal M., et al., Nature 383, 802 (1996).

S.N. acknowledges the Whitaker Foundation for a Biomedical Engineering Award and the Beckman Foundation for a Beckman Young Investigator Award. This work was supported by Indiana University Startup Funds.