Khái niệm lập trình xác suất (logic)

Machine Learning - Tập 100 - Trang 5-47 - 2015
Luc De Raedt1, Angelika Kimmig1
1Department of Computer Science, KU Leuven, Heverlee, Belgium

Tóm tắt

Có rất nhiều ngôn ngữ lập trình xác suất khác nhau hiện nay, tất cả đều mở rộng một ngôn ngữ lập trình truyền thống với các nguyên tố để hỗ trợ mô hình hóa các phân phối xác suất phức tạp, có cấu trúc. Mỗi ngôn ngữ này đều sử dụng các nguyên tố xác suất riêng và đi kèm với cú pháp, ngữ nghĩa và quy trình suy diễn đặc trưng. Điều này khiến việc hiểu các khái niệm lập trình cơ bản và nhận thức được sự khác biệt giữa các ngôn ngữ trở nên khó khăn. Để có được hiểu biết tốt hơn về lập trình xác suất, chúng tôi xác định một số khái niệm lập trình cốt lõi dưới những nguyên tố được sử dụng bởi các ngôn ngữ xác suất khác nhau, thảo luận về các cơ chế thực thi mà chúng yêu cầu và sử dụng những điều này để xác định vị trí và khảo sát các ngôn ngữ xác suất tiên tiến nhất và cách thực thi của chúng. Trong quá trình này, chúng tôi tập trung vào các mở rộng xác suất của các ngôn ngữ lập trình logic như Prolog, vốn đã được xem xét trong hơn 20 năm qua.

Từ khóa

#lập trình xác suất #ngôn ngữ lập trình #Prolog

Tài liệu tham khảo

Angelopoulos, N., & Cussens, J. (2004). On the implementation of MCMC proposals over stochastic logic programs. In M. Carro & J. F. Morales (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-04). Arora, N. S., de Salvo Braz, R., Sudderth, E. B., & Russell, S. J. (2010). Gibbs sampling in open-universe stochastic languages. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 30–39). AUAI Press. Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1986). Magic sets and other strange ways to implement logic programs (extended abstract). In A. Silberschatz (Ed.), Proceedings of the 5th ACM SIGACT-SIGMOD symposium on principles of database systems (PODS-86) (pp. 1–15). ACM. Baral, C., Gelfond, M., & Rushton, J. N. (2004). Probabilistic reasoning with answer sets. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the 7th international conference on logic programming and nonmonotonic reasoning (LPNMR-04), Lecture Notes in Computer Science, (Vol. 2923, pp. 21–33). Springer. Baral, C., Gelfond, M., & Rushton, N. (2009). Probabilistic reasoning with answer sets. Theory and Practice of Logic Programming (TPLP), 9(1), 57–144. Bellodi, E., Lamma, E., Riguzzi, F., Santos Costa, V., & Zese, R. (2014). Lifted variable elimination for probabilistic logic programming. Theory and Practice of Logic Programming (TPLP), 14(4–5), 681–695. Bragaglia, S., & Riguzzi, F. (2010). Approximate inference for logic programs with annotated disjunctions. In P. Frasconi & F. A. Lisi (Eds.), Revised papers of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 30–37). Springer. Bröcheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic similarity logic. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 73–82). AUAI Press. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., & Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1306–1313). AAAI Press. Cohen, S. B., Simmons, R. J., & Smith, N. A. (2008). Dynamic programming algorithms as products of weighted logic programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 114–129). Springer. Cohen, W. W. (2000). WHIRL: A word-based information representation language. Artificial Intelligence, 118(1), 163–196. Cussens, J. (2005). Integrating by separating: Combining probability and logic with ICL, PRISM and SLPs. APRIL II project report. Dalvi, N. N., & Suciu, D. (2004). Efficient query evaluation on probabilistic databases. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley & K. B. Schiefer (Eds.), Proceedings of the 30th international conference on very large databases (VLDB-04), (pp. 864–875). Morgan Kaufmann Publishers. Dantsin, E. (1991). Probabilistic logic programs and their semantics. In A. Voronkov (Ed.), Proceedings of the first Russian conference on logic programming, Lecture Notes in Computer Science (Vol. 592, pp. 152–164). Springer. De Maeyer, D., Renkens, J., Cloots, L., De, Raedt L., & Marchal, K. (2013). Phenetic: Network-based interpretation of unstructured gene lists in E. coli. Molecular BioSystems, 9(7), 1594–1603. De Raedt, L., & Kersting, K. (2003). Probabilistic logic learning. SIGKDD Explorations, 5(1), 31–48. De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link discovery. In M. M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-07), (pp. 2462–2467). Morgan Kaufmann Publishers. Eisner, J., & Filardo, N. W. (2011). Dyna: Extending Datalog for modern AI. In O. de Moor, G. Gottlob, T. Furche & A. Sellers (Eds.), Datalog reloaded, Lecture Notes in Computer Science (Vol. 6702, pp. 181–220). Springer. Eisner, J., Goldlust, E., & Smith, N. (2005). Compiling Comp Ling: Weighted dynamic programming and the Dyna language. In C. Brew, L. F. Chien & K. Kirchhoff (Eds.), Proceedings of the human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP-05), (pp. 281–290). The Association for Computational Linguistics. Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation to other probabilistic logical models. In S. Kramer & B. Pfahringer (Eds.), Proceedings of the 15th international conference on inductive logic programming (ILP-05), Lecture Notes in Computer Science (Vol. 3625, pp. 121–135). Springer. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., & De Raedt, L. (2011). Inference in probabilistic logic programs using weighted CNFs. In F. G. Cozman & A. Pfeffer (Eds.), Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI-11), (pp. 211–220). AUAI Press. Fierens, D., Van den Broeck, G., Bruynooghe, M., & De Raedt, L. (2012). Constraints for probabilistic logic programming. In V. Mansinghka, D. Roy & N. Goodman (Eds.), Proceedings of the NIPS probabilistic programming workshop. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., et al. (2013). Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory and Practice of Logic Programming, 15(3), 358–401. doi:10.1017/S1471068414000076. Flach, P. A. (1994). Simply logical: Intelligent reasoning by example. New York: John Wiley. Fuhr, N. (1995). Probabilistic Datalog—A logic for powerful retrieval methods. In E. A. Fox, P. Ingwersen & R. Fidel (Eds.), Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR-95), (pp. 282–290). ACM Press. Fuhr, N. (2000). Probabilistic Datalog: Implementing logical information retrieval for advanced applications. Journal of the American Society for Information Science (JASIS), 51(2), 95–110. Gerstenberg, T., & Goodman, N. D. (2012). Ping pong in Church: Productive use of concepts in human probabilistic inference. In N. Miyake, D. Peebles & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the cognitive science society (pp. 1590–1595). Cognitive Science Society. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., & Taskar, B. (2007). Probabilistic relational models. In L. Getoor & B. Taskar (Eds.), An introduction to statistical relational learning (pp. 129–174). Cambridge, MA: MIT Press. Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In D. A. McAllester & P. Myllymäki (Eds.), Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI-08), (pp. 220–229). AUAI Press. Gutmann, B., Jaeger, M., & De Raedt, L. (2010). Extending ProbLog with continuous distributions. In P. Frasconi & F. A. Lisi (Eds.), Proccedings of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 76–91). Springer. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming (TPLP), 11(4–5), 663–680. Haddawy, P. (1994). Generating Bayesian networks from probabilistic logic knowledge bases. In R. L. de Mántaras & D. Poole (Eds.), Proceedings of the 10th annual conference on uncertainty in artificial intelligence (UAI-94) (pp. 262–269). Morgan Kaufmann Publishers. van der Heijden, M., & Lucas, P. J. F. (2013). Describing disease processes using a probabilistic logic of qualitative time. Artificial Intelligence in Medicine, 59(3), 143–155. Hommersom, A., & Lucas, P. J. F. (2011). Generalising the interaction rules in probabilistic logic. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11), (pp. 912–917). AAAI Press. Hommersom, A., de Carvalho Ferreira, N., & Lucas, P. J. F. (2009). Integrating logical reasoning and probabilistic chain graphs. In W. L. Buntine, M. Grobelnik, D. Mladenic & J. Shawe-Taylor (Eds.), Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09), Lecture Notes in Computer Science (Vol. 5781, pp. 548–563). Springer. Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge: Cambridge University Press. Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. P. Shenoy (Eds.), Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Morgan Kaufmann Publishers. Jaeger, M. (2008). Model-theoretic expressivity analysis. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 325–339). Springer. Kersting, K. (2012). Lifted probabilistic inference. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz & P. J. F. Lucas (Eds.), Proceedings of the 20th European conference on artificial intelligence (ECAI-12), Frontiers in Artificial Intelligence and Applications (Vol. 242, pp. 33–38). IOS Press. Kersting, K., & De Raedt, L. (2001). Bayesian logic programs. CoRR cs.AI/0111058. Kersting, K., & De Raedt, L. (2008). Basic principles of learning Bayesian logic programs. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 189–221). Springer. Kersting, K., De Raedt, L., & Raiko, T. (2006). Logical hidden Markov models. Journal of Artificial Intelligence Research (JAIR), 25, 425–456. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 175–189). Springer. Kimmig, A., Gutmann, B., & Santos Costa, V. (2009). Trading memory for answers: Towards tabling ProbLog. In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009). Kimmig, A., Van den Broeck, G., & De Raedt, L. (2011a). An algebraic Prolog for reasoning about possible worlds. In W. Burgard & D. Roth (Eds.), Proceedings of the 25th AAAI conference on artificial intelligence (AAAI-11) (pp. 209–214). AAAI Press. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., & Rocha, R. (2011b). On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming (TPLP), 11(2–3), 235–262. Kimmig, A., Mihalkova, L., & Getoor, L. (2015). Lifted graphical models: A survey. Machine Learning., 99(1), 1–45. Koller, D., & Pfeffer, A. (1998). Probabilistic frame-based systems. In J. Mostow & C. Rich (Eds.), Proceedings of the 15th national conference on artificial intelligence (AAAI-98) (pp. 580–587). AAAI Press/MIT Press. Lloyd, J. W. (1989). Foundations of Logic Programming (2nd ed.). Berlin: Springer. Lodhi, H., & Muggleton, S. (2005). Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In V. Danos & V. Schächter (Eds.), Revised selected papers of the international conference on computational methods in systems biology (CMSB-04), Lecture Notes in Computer Science (Vol. 3082, pp. 119–133). Springer. Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. B. (2013). Approximate Bayesian image interpretation using generative probabilistic graphics programs. In C. J. C. Burges, L. Bottou, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 27th annual conference on neural information processing systems (NIPS-13), Neural Information Processing Systems, (pp. 1520–1528). Mantadelis, T., & Janssens, G. (2011). Nesting probabilistic inference. In S. Abreu & V. Santos Costa (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-11). Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 1352–1359). NY: Professional Book Center. Moldovan, B., Thon, I., Davis, J., & De Raedt, L. (2013). MCMC estimation of conditional probabilities in probabilistic programming languages. In L. C. van der Gaag (Ed.), Proceedings of the 12th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU-13), Lecture Notes in Computer Science (Vol. 7958, pp. 436–448). Springer. Mørk, S., & Holmes, I. (2012). Evaluating bacterial gene-finding HMM structures as probabilistic logic programs. Bioinformatics, 28(5), 636–642. Muggleton, S. (1996). Stochastic logic programs. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 254–264). Amsterdam: IOS Press. Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., & Restificar, A. C. (2005). Learning first-order probabilistic models with combining rules. In L. De Raedt & S. Wrobel (Eds.), Proceedings of the 22nd international conference on machine learning (ICML-05), ACM International conference proceeding series (Vol. 119, pp. 609–616). ACM. Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In N. Amato (Ed.), Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS-13) (pp. 2764–2771). IEEE. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann Publishers. Pfeffer, A. (2001). IBAL: A probabilistic rational programming language. In B. Nebel (Ed.), Proceedings of the 17th international joint conference on artificial intelligence (IJCAI-01), (pp. 733–740). Morgan Kaufmann Publishers. Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles River Analytics: Technical report. Poole, D. (1992). Logic programming, abduction and probability. In Proceedings of the international conference on fifth generation computing systems (FGCS-92) (pp. 530–538). IOS Press. Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129. Poole, D. (1995). Exploiting the rule structure for decision making within the independent choice logic. In P. Besnard & S. Hanks (Eds.), Proceedings of the eleventh annual conference on uncertainty in artificial intelligence (UAI-95) (pp. 454–463). Morgan Kaufmann Publishers. Poole, D. (2000). Abducing through negation as failure: Stable models within the independent choice logic. Journal of Logic Programming, 44(1–3), 5–35. Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-03) (pp. 985–991). Morgan Kaufmann Publishers. Poole, D. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 222–243). Springer. Poole, D. (2010). Probabilistic programming languages: Independent choices and deterministic systems. In R. Dechter, H. Geffner & J. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 253–269). NY: College Publications. Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Y. Gil & R. J. Mooney (Eds.), Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 458–463). AAAI Press. Renkens, J., Van den Broeck, G., & Nijssen, S. (2012). k-optimal: A novel approximate inference algorithm for ProbLog. Machine Learning, 89(3), 215–231. Renkens, J., Kimmig, A., Van den Broeck, G., & De Raedt, L. (2014). Explanation-based approximate weighted model counting for probabilistic logics. In C. E. Brodley & P. Stone (Eds.), Proceedings of the 28th AAAI conference on artificial intelligence (AAAI-14) (pp. 2490–2496). AAAI Press. Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–136. Riguzzi, F. (2009). Extended semantics and inference for the Independent Choice Logic. Logic Journal of the IGPL, 17(6), 589–629. Riguzzi, F. (2013a). cplint Manual. https://sites.google.com/a/unife.it/ml/cplint/cplint-manual Riguzzi, F. (2013b). MCINTYRE: A Monte Carlo system for probabilistic logic programming. Fundamenta Informaticae, 124(4), 521–541. Riguzzi, F. (2014). Speeding up inference for probabilistic logic programs. The Computer Journal, 57(3), 347–363. Riguzzi, F., & Swift, T. (2011). The PITA system: Tabling and answer subsumption for reasoning under uncertainty. Theory and Practice of Logic Programming (TPLP), 11(4–5), 433–449. Roy, D., Mansinghka, V., Winn, J., McAllester, D., Tenenbaum, D. (Eds.) (2008) . Probabilistic programming, NIPS Workshop. Russell, S. J., & Norvig, (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River: Prentice Hall. Santos Costa, V., & Paes, A. (2009). On the relationship between PRISM and CLP( BN). In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009). Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003). CLP( BN): Constraint logic programming for probabilistic knowledge. In C. Meek & U. Kjærulff (Eds.), Proceedings of the 19th conference on uncertainty in artificial intelligence (UAI-03) (pp. 517–524). Morgan Kaufmann Publishers. Santos Costa, V., Page, D., & Cussens, J. (2008). CLP( BN): Constraint logic programming for probabilistic knowledge. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 156–188). Springer. Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Ed.), Proceedings of the 12th international conference on logic programming (ICLP-95) (pp. 715–729). MIT Press. Sato, T. (2011). A general MCMC method for Bayesian inference in logic-based probabilistic modeling. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 1472–1477). AAAI Press. Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In M. E. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). Morgan Kaufmann Publishers. Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research (JAIR), 15, 391–454. Sato, T., Kameya, Y., & Zhou, N. F. (2005). Generative modeling with failure in PRISM. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 847–852). Professional Book Center. Sato, T., Kameya, Y., & Kurihara, K. (2008). Variational Bayes via propositionalized probability computation in PRISM. Annals of Mathematics and Artificial Intelligence, 54(1–3), 135–158. Skarlatidis, A., Artikis, A., Filippou, J., & Paliouras, G. (2015). A probabilistic logic programming event calculus. Theory and Practice of Logic Programming (TPLP), 15(2), 213–245. Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., & Sato, T. (2010). CHR(PRISM)-based probabilistic logic learning. Theory and Practice of Logic Programming (TPLP), 10(4–6), 433–447. Stuhlmueller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative concepts. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2296–2301). Cognitive Science Society. Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases, Synthesis lectures on data management (Vol. 16). Burlington: Morgan & Claypool Publishers. Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and applications. Machine Learning, 82(2), 239–272. Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3), 410–421. Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic probabilistic Prolog. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1217–1222). AAAI Press. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted probabilistic inference by first-order knowledge compilation. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 2178–2185). AAAI Press. Van den Broeck, G., Meert, W., & Darwiche, A. (2014). Skolemization for weighted first-order model counting. In C. Baral, G. D. Giacomo & T. Eiter (Eds.), Proceedings of the 14th international conference on principles of knowledge representation and reasoning (KR-14) (pp. 111–120). AAAI Press. Vennekens, J. (2007). Algebraic and logical study of constructive processes in knowledge representation. PhD thesis, K.U. Leuven. Vennekens, J., Verbaeten, S., & Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In: B. Demoen & V. Lifschitz (Eds.), Proceedings of the 20th international conference on logic programming (ICLP-04), Lecture Notes in Computer Science (Vol. 3132, pp. 431–445). Springer. Vennekens, J., Denecker, M., & Bruynooghe, M. (2006). Representing causal information about a probabilistic process. In M. Fisher, W. van der Hoek, B. Konev & A. Lisitsa (Eds.), Proceedings of the 10th European conference on logics in artificial intelligence (JELIA-06), Lecture Notes in Computer Science (Vol. 4160, pp. 452–464). Springer. Vennekens, J., Denecker, M., & Bruynooghe, M. (2009). CP-logic: A language of causal probabilistic events and its relation to logic programming. Theory and Practice of Logic Programming (TPLP), 9(3), 245–308. Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized PageRank: A locally groundable first-order probabilistic logic. In Q. He, A. Iyengar, W. Nejdl, J. Pei & R. Rastogi (Eds.), Proceedings of the 22nd ACM international conference on information and knowledge management (CIKM-13) (pp. 2129–2138). ACM. Warren, D. S. (1992). Memoing for logic programs. Communications of the ACM (CACM), 35(3), 93–111. Wellman, M. P., Breese, J. S., & Goldman, R. P. (1992). From knowledge bases to decision models. The Knowledge Engineering Review, 7(1), 35–53.