Probabilistic logic learning
Tóm tắt
The past few years have witnessed an significant interest in probabilistic logic learning, i.e. in research lying at the intersection of probabilistic reasoning, logical representations, and machine learning. A rich variety of different formalisms and learning techniques have been developed. This paper provides an introductory survey and overview of the state-of-the-art in probabilistic logic learning through the identification of a number of important probabilistic, logical and learning concepts.
Từ khóa
Tài liệu tham khảo
J. Allen . Natural Language Understanding . Benjamin/Cummings Series in Computer Science. Benjamin/Cummings Publishing Company , 1987 .]] J. Allen. Natural Language Understanding. Benjamin/Cummings Series in Computer Science. Benjamin/Cummings Publishing Company, 1987.]]
F. Bergadano and D. Gunetti . Inductive Logic Programming: From Machine Learning to Software Engeneering . MIT Press , 1996 .]] F. Bergadano and D. Gunetti. Inductive Logic Programming: From Machine Learning to Software Engeneering. MIT Press, 1996.]]
J. S. Breese , R. P. Goldman , and M. P. Wellman . Introduction to the special section on knowledge-based construction of probabilistic and decision models . Cybernetics , 24 ( 11 ): 1577 -- 1579 , 1994 .]] J. S. Breese, R. P. Goldman, and M. P. Wellman. Introduction to the special section on knowledge-based construction of probabilistic and decision models. Cybernetics, 24(11):1577--1579, 1994.]]
K. L. Clark and F. G. McCabe. PROLOG: A Language for Implementing Expert Systems . In J. E. Hayes, D. Michie, and Y. H. Pao, editors, Machine Intelligence , volume 10 , pages 455 -- 470 . Ellis Horwood , Chichester , 1982 .]] K. L. Clark and F. G. McCabe. PROLOG: A Language for Implementing Expert Systems. In J. E. Hayes, D. Michie, and Y. H. Pao, editors, Machine Intelligence, volume 10, pages 455--470. Ellis Horwood, Chichester, 1982.]]
R. G. Cowell , A. P. Dawid , S. L. Lauritzen , and D. J. Spiegelhalter . Probabilistic networks and expert systems . Springer-Verlag , 1999 .]] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and expert systems. Springer-Verlag, 1999.]]
J. Cussens . Loglinear models for first-order probabilistic reasoning. In K. B. Laskey and H. Prade, editors , Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99) , pages 126 -- 133 , Stockholm, Sweden , 1999 . Morgan Kaufmann.]] J. Cussens. Loglinear models for first-order probabilistic reasoning. In K. B. Laskey and H. Prade, editors, Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 126--133, Stockholm, Sweden, 1999. Morgan Kaufmann.]]
J. Cussens . Stochastic logic programs: Sampling, inference and applications. In C. Boutilier and M. Goldszmidt, editors , Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-00) , pages 115 -- 122 , Stanford, CA USA , 2000 . Morgan Kaufmann.]] J. Cussens. Stochastic logic programs: Sampling, inference and applications. In C. Boutilier and M. Goldszmidt, editors, Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-00), pages 115--122, Stanford, CA USA, 2000. Morgan Kaufmann.]]
J. Cussens . Statistical aspects of stochastic logic programs. In T. Jaakkola and T. Richardson, editors , Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics 2001 , pages 181 -- 186 , Key West, Florida, USA , 2001 . Morgan Kaufmann.]] J. Cussens. Statistical aspects of stochastic logic programs. In T. Jaakkola and T. Richardson, editors, Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics 2001, pages 181--186, Key West, Florida, USA, 2001. Morgan Kaufmann.]]
L. De Raedt . Interactive Theory Revision: An Inductive Logic Programming Approach . Academic Press , 1992 .]] L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming Approach. Academic Press, 1992.]]
T. Dean and K. Kanazawa . Probabilistic temporal reasoning. In T. M. Mitchell and R. G. Smith, editors , Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI-88) , pages 524 -- 528 , St. Paul, MN, USA , 1988 . AAAI Press / The MIT Press.]] T. Dean and K. Kanazawa. Probabilistic temporal reasoning. In T. M. Mitchell and R. G. Smith, editors, Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI-88), pages 524--528, St. Paul, MN, USA, 1988. AAAI Press / The MIT Press.]]
A. P. Dempster , N. M. Laird , and D. B. Rubin . Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc ., B 39 :1--39 , 1977 .]] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc., B 39 :1--39, 1977.]]
A. Eisele . Towards probabilistic extensions of contraint-based grammars . In J. Dörne, editor, Computational Aspects of Constraint-Based Linguistics Decription-II. DYNA-2 deliverable R1.2.B , 1994 .]] A. Eisele. Towards probabilistic extensions of contraint-based grammars. In J. Dörne, editor, Computational Aspects of Constraint-Based Linguistics Decription-II. DYNA-2 deliverable R1.2.B, 1994.]]
William Feller . An Introduction to Probability Theory and its Applications : Volume 1 . Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons , 3 rd edition, 1968 .]] William Feller. An Introduction to Probability Theory and its Applications: Volume 1. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, 3rd edition, 1968.]]
P. Flach . Simply logical : intelligent reasoning by example . John Wiley and Sons Ltd ., 1994 .]] P. Flach. Simply logical: intelligent reasoning by example. John Wiley and Sons Ltd., 1994.]]
P. Flach and N. Lachiche . 1BC: A first-order Bayesian classifier . In S. Džeroski and P. Flach, editors, Proceedings of the Ninth International Workshop on Inductive Logic Programming (ILP-99) , volume 1634 of LNAI , pages 92 -- 103 , Bled, Slovenia , 1999 . Springer .]] P. Flach and N. Lachiche. 1BC: A first-order Bayesian classifier. In S. Džeroski and P. Flach, editors, Proceedings of the Ninth International Workshop on Inductive Logic Programming (ILP-99), volume 1634 of LNAI, pages 92--103, Bled, Slovenia, 1999. Springer.]]
N. Friedman . The Bayesian Structural EM Algorithm. In G. F. Cooper and S. Moral, editors , Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98) , pages 129 -- 138 , Madison, Wisconsin, USA , 1998 . Morgan Kaufmann.]] N. Friedman. The Bayesian Structural EM Algorithm. In G. F. Cooper and S. Moral, editors, Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 129--138, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.]]
N. Friedman , L. Getoor , D. Koller , and A. Pfeffer . Learning probabilistic relational models. In T. Dean, editor , Proceedings of the Sixteenth International Joint Conferences on Artificial Intelligence (IJCAI-99) , pages 1300 -- 1309 , Stockholm, Sweden , 1999 . Morgan Kaufmann.]] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In T. Dean, editor, Proceedings of the Sixteenth International Joint Conferences on Artificial Intelligence (IJCAI-99), pages 1300--1309, Stockholm, Sweden, 1999. Morgan Kaufmann.]]
L. Getoor , N. Friedman , and D. Koller . Learning Structured Statistical Models from Relational Data. Linköping Electronic Articles in Computer and Information Science, 7(13) , 2002 .]] L. Getoor, N. Friedman, and D. Koller. Learning Structured Statistical Models from Relational Data. Linköping Electronic Articles in Computer and Information Science, 7(13), 2002.]]
L. Getoor , N. Friedman , D. Koller , and B. Taskar . Learning Probabilistic Models of Relational Structure. In C. E. Brodley and A. Pohoreckyj Danyluk, editors , Proceedings of the Eighteenth International Conference on Machine Learning (ICML-01) , pages 170 -- 177 , Williamstown, MA, USA , 2001 . Morgan Kaufmann.]] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning Probabilistic Models of Relational Structure. In C. E. Brodley and A. Pohoreckyj Danyluk, editors, Proceedings of the Eighteenth International Conference on Machine Learning (ICML-01), pages 170--177, Williamstown, MA, USA, 2001. Morgan Kaufmann.]]
L. Getoor , D. Koller , and B. Taskar . Statistical Models for Relational Data. In S. Džeroski and L. De Raedt, editors , Workshop Notes of the KDD-02 Workshop on Multi-Relational Data Mining (MRDM-O2) , 2002 .]] L. Getoor, D. Koller, and B. Taskar. Statistical Models for Relational Data. In S. Džeroski and L. De Raedt, editors, Workshop Notes of the KDD-02 Workshop on Multi-Relational Data Mining (MRDM-O2), 2002.]]
L. Getoor , D. Koller , B. Taskar , and N. Friedman . Learning probabilistic relational models with structural uncertainty. In L. Getoor and D. Jensen, editors , Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data , pages 13 -- 20 , 2000 .]] L. Getoor, D. Koller, B. Taskar, and N. Friedman. Learning probabilistic relational models with structural uncertainty. In L. Getoor and D. Jensen, editors, Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, pages 13--20, 2000.]]
L. Getoor , E. Segal , B. Taskar , and D. Koller . Probabilistic Models of Text and Link Structure for Hypertext Classification. In Workshop Notes of IJCAI-01 Workshop on 'Text Learning: Beyond Supervision' , Washington, USA , 2001 .]] L. Getoor, E. Segal, B. Taskar, and D. Koller. Probabilistic Models of Text and Link Structure for Hypertext Classification. In Workshop Notes of IJCAI-01 Workshop on 'Text Learning: Beyond Supervision', Washington, USA, 2001.]]
S. Glesner and D. Koller . Constructing Flexible Dynamic Belief Networks from First-Order Probabilistic Knowledge Bases . In Ch. Froidevaux and J. Kohlas, editors, Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU-95) , volume 946 of LNCS , pages 217 -- 226 , Fribourg, Switzerland , 1995 . Springer-Verlag .]] S. Glesner and D. Koller. Constructing Flexible Dynamic Belief Networks from First-Order Probabilistic Knowledge Bases. In Ch. Froidevaux and J. Kohlas, editors, Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU-95), volume 946 of LNCS, pages 217--226, Fribourg, Switzerland, 1995. Springer-Verlag.]]
R. P. Goldman and E. Charniak . Dynamic construction of belief networks. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors , Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI-90) , pages ' 171 -- 184 , Cambridge, MA, USA , 1990 . Elsevier.]] R. P. Goldman and E. Charniak. Dynamic construction of belief networks. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI-90), pages '171--184, Cambridge, MA, USA, 1990. Elsevier.]]
P. Haddawy , J. W. Helwig , L. Ngo , and R. A. Krieger . Clinical Simulation using Context-Sensitive Temporal Probability Models . In Proceedings of the Nineteenth Annual Symposium on Computer Applications an Medical Care (SCAMC-95) , 1995 .]] P. Haddawy, J. W. Helwig, L. Ngo, and R. A. Krieger. Clinical Simulation using Context-Sensitive Temporal Probability Models. In Proceedings of the Nineteenth Annual Symposium on Computer Applications an Medical Care (SCAMC-95), 1995.]]
M. Jaeger . Relational Bayesian networks. In D. Geiger and P. P. Shenoy , editors , Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97) , pages 266 -- 273 , Providence, Rhode Island, USA , 1997 . Morgan Kaufmann.]] M. Jaeger. Relational Bayesian networks. In D. Geiger and P. P. Shenoy, editors, Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), pages 266--273, Providence, Rhode Island, USA, 1997. Morgan Kaufmann.]]
M. I. Jordan , editor. Learning in Graphical Models . Kluwer Academic Publishers. Reprinted by MIT Press , 1998 .]] M. I. Jordan, editor. Learning in Graphical Models. Kluwer Academic Publishers. Reprinted by MIT Press, 1998.]]
Y. Kameya and T. Sato . Efficient EM learning with tabulation for parameterized logic programs . In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K . Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors, Proceedings of the First International Conference on Computational Logic (CL-00), volume 1861 of LNAI , pages 269 -- 294 . Springer-Verlag , 2000 .]] Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors, Proceedings of the First International Conference on Computational Logic (CL-00), volume 1861 of LNAI, pages 269--294. Springer-Verlag, 2000.]]
K. Kersting and L. De Raedt . Adaptive Bayesian Logic Programs . In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh Conference on Inductive Logic Programming (ILP-01) , volume 2157 of LNCS , Strasbourg, France , 2001 . Springer .]] K. Kersting and L. De Raedt. Adaptive Bayesian Logic Programs. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh Conference on Inductive Logic Programming (ILP-01), volume 2157 of LNCS, Strasbourg, France, 2001. Springer.]]
K. Kersting and L. De Raedt . Towards Combining Inductive Logic Programming and Bayesian Networks . In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh Conference on Inductive Logic Programming (ILP-01) , volume 2157 of LNCS , Strasbourg, France , 2001 . Springer .]] K. Kersting and L. De Raedt. Towards Combining Inductive Logic Programming and Bayesian Networks. In C. Rouveirol and M. Sebag, editors, Proceedings of the Eleventh Conference on Inductive Logic Programming (ILP-01), volume 2157 of LNCS, Strasbourg, France, 2001. Springer.]]
K. Kersting , T. Raiko , S. Kramer , and L. De Raedt . Towards discovering structural signatures of protein folds based on logical hidden markov models. In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors , Proceedings of the Pacific Symposium on Biocomputing , pages 192 -- 203 , Kauai, Hawaii, USA , 2003 . World Scientific.]] K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering structural signatures of protein folds based on logical hidden markov models. In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing, pages 192--203, Kauai, Hawaii, USA, 2003. World Scientific.]]
K. Kersting , T. Raiko , and L. De Raedt . A Structural GEM for Learning Logical Hidden Markov Models. In S. Džeroski, L. De Raedt, and S. Wrobel, editors , Workshop Notes of the KDD-03 Workshop on Multi-Relational Data Mining (MRDM-03) , 2003 . (to appear).]] K. Kersting, T. Raiko, and L. De Raedt. A Structural GEM for Learning Logical Hidden Markov Models. In S. Džeroski, L. De Raedt, and S. Wrobel, editors, Workshop Notes of the KDD-03 Workshop on Multi-Relational Data Mining (MRDM-03), 2003. (to appear).]]
D. Koller . Probabilistic relational models . In S. Džeroski and P. Flach, editors, Proceedings of Ninth International Workshop on Inductive Logic Programming (ILP-99) , volume 1634 of LNAI , pages 3 -- 13 , Bled, Slovenia , 1999 . Springer .]] D. Koller. Probabilistic relational models. In S. Džeroski and P. Flach, editors, Proceedings of Ninth International Workshop on Inductive Logic Programming (ILP-99), volume 1634 of LNAI, pages 3--13, Bled, Slovenia, 1999. Springer.]]
D. Koller , A. Levy , and A. Pfeffer . P-classic: A tractable probabilistic description logic . In Proceedings of the Fourteenth National Conference on AI , pages 390 -- 397 , Providence, Rhode Island , August 1997 .]] D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic description logic. In Proceedings of the Fourteenth National Conference on AI, pages 390--397, Providence, Rhode Island, August 1997.]]
D. Koller and A. Pfeffer . Learning probabilities for noisy first-order rules . In Proceedings of the Fifteenth Joint Conference on Artificial Intelligence (IJCAI-97) , pages 1316 -- 1321 , Nagoya, Japan , 1997 .]] D. Koller and A. Pfeffer. Learning probabilities for noisy first-order rules. In Proceedings of the Fifteenth Joint Conference on Artificial Intelligence (IJCAI-97), pages 1316--1321, Nagoya, Japan, 1997.]]
D. Koller and A. Pfeffer . Object-oriented Bayesian networks. In D. Geiger and P. P. Shenoy, editors , Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97) , pages 302 -- 313 , Providence, Rhode Island, USA , 1997 . Morgan Kaufmann.]] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In D. Geiger and P. P. Shenoy, editors, Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), pages 302--313, Providence, Rhode Island, USA, 1997. Morgan Kaufmann.]]
D. Koller and A. Pfeffer . Probabilistic frame-based systems . In Proceedings of the Fifteenth National Conference on Artificial Intelligence , pages 580 -- 587 , Madison, Wisconsin, USA , July 1998 . AAAI Press.]] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 580--587, Madison, Wisconsin, USA, July 1998. AAAI Press.]]
N. Lachiche and P. Flach . 1BC2: A True First-Order Bayesian Classifier . In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth International Conference on Inductive Logic Prgramming (ILP-02) , volume 2583 of LNCS , pages 133 -- 148 , Sydney, Australia , 2002 . Springer .]] N. Lachiche and P. Flach. 1BC2: A True First-Order Bayesian Classifier. In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth International Conference on Inductive Logic Prgramming (ILP-02), volume 2583 of LNCS, pages 133--148, Sydney, Australia, 2002. Springer.]]
J. W. Lloyd . Foundations of Logic Programming . Springer, Berlin, 2. edition , 1989 .]] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2. edition, 1989.]]
C. H. Manning and H. Schütze . Foundations of Statistical Natural Language Processing . The MIT Press , 1999 .]] C. H. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. The MIT Press, 1999.]]
G. J. McKachlan and T. Krishnan . The EM Algorithm and Extensions. John Eiley & Sons , Inc ., 1997 .]] G. J. McKachlan and T. Krishnan. The EM Algorithm and Extensions. John Eiley & Sons, Inc., 1997.]]
S. Muggleton . Stochastic logic programs . In L. De Raedt , editor, Advances in Inductive Logic Programming. IOS Press , 1996 .]] S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances in Inductive Logic Programming. IOS Press, 1996.]]
S. Muggleton . Learning stochastic logic programs . Electronic Transactions in Artificial Intelligence , 4 ( 041 ), 2000 .]] S. Muggleton. Learning stochastic logic programs. Electronic Transactions in Artificial Intelligence, 4(041), 2000.]]
S. Muggleton . Learning structure and parameters of stochastic logic programs . In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth International Conference on Inductive Logic Prgramming (ILP-02) , volume 2583 of LNCS , pages 198 -- 206 , Sydney, Australia , 2002 . Springer .]] S. Muggleton. Learning structure and parameters of stochastic logic programs. In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth International Conference on Inductive Logic Prgramming (ILP-02), volume 2583 of LNCS, pages 198--206, Sydney, Australia, 2002. Springer.]]
S. H. Muggleton . Learning stochastic logic programs. In L. Getoor and D. Jensen, editors , Working Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data (SRL-00) , pages 36 -- 41 , Austin, Texas , 2000 . AAAI Press.]] S. H. Muggleton. Learning stochastic logic programs. In L. Getoor and D. Jensen, editors, Working Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data (SRL-00), pages 36--41, Austin, Texas, 2000. AAAI Press.]]
L. Ngo and P. Haddawy . A Knowledge-Based Model Construction Approach to Medical Decision Making . In Proceedings of the Twentieth American Medical Informatics Association Annual Fall Symposium (AMIA-96) , Washington DC, USA , 1996 .]] L. Ngo and P. Haddawy. A Knowledge-Based Model Construction Approach to Medical Decision Making. In Proceedings of the Twentieth American Medical Informatics Association Annual Fall Symposium (AMIA-96), Washington DC, USA, 1996.]]
N. J. Nilsson . Principles of Artificial Intelligence . Springer-Verlag , New York , 1986 . Reprint, Originally published: Tioga Publishing Co., 1980.]] N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, New York, 1986. Reprint, Originally published: Tioga Publishing Co., 1980.]]
H. Pasula , B. Marthi , B. Milch , S. Russell , and I. Shpitser . Identity Uncertainty and Citation Matching . In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15 . MIT Press , 2003 .]] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity Uncertainty and Citation Matching. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15. MIT Press, 2003.]]
H. Pasula and S. Russell . Approximate inference for first-order probabilistic languages. In B. Nebel, editor , Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01) , pages 741 -- 748 , Seattle, Washington, USA , 2001 . Morgan Kaufmann.]] H. Pasula and S. Russell. Approximate inference for first-order probabilistic languages. In B. Nebel, editor, Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 741--748, Seattle, Washington, USA, 2001. Morgan Kaufmann.]]
J. Pearl . Reasoning in Intelligent Systems : Networks of Plausible Inference. Morgan Kaufmann, 2. edition , 1991 .]] J. Pearl. Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 2. edition, 1991.]]
A. Pfeffer and D. Koller . Semantics and Inference for Recursive Probability Models. In H. Kautz and B. Porter, editors , Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-00) , pages 538 -- 544 ., Austin, Texas, USA , 2000 . AAAI Press.]] A. Pfeffer and D. Koller. Semantics and Inference for Recursive Probability Models. In H. Kautz and B. Porter, editors, Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-00), pages 538--544., Austin, Texas, USA, 2000. AAAI Press.]]
A. Pfeffer , D. Koller , B. Milch , and K. T. Takusagawa . Spook: A system for probabilistic object-oriented knowledge representation . In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-1999) , 1999 .]] A. Pfeffer, D. Koller, B. Milch, and K. T. Takusagawa. Spook: A system for probabilistic object-oriented knowledge representation. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-1999), 1999.]]
S. J. Russell and P. Norvig . Artificial Intelligence: A Modern Approach . Prentice-Hall, Inc. , 1995 .]] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc., 1995.]]
V. Santos Costa , D. Page , M. Qazi , and J. Cussens . CLP(BN): Constraint Logic Programming for Probabilistic Knowledge . In Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-03) , Mexico , 2003 . Morgan Kaufman. (to appear).]] V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint Logic Programming for Probabilistic Knowledge. In Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), Mexico, 2003. Morgan Kaufman. (to appear).]]
T. Sato . A Statistical Learning Method for Logic Programs with Distribution Semantics. In L. Sterling, editor , Proceedings of the Twelfth International Conference on Logic Programming (ICLP-1995) , pages 715 -- 729 , Tokyo, Japan , 1995 . MIT Press.]] T. Sato. A Statistical Learning Method for Logic Programs with Distribution Semantics. In L. Sterling, editor, Proceedings of the Twelfth International Conference on Logic Programming (ICLP-1995), pages 715--729, Tokyo, Japan, 1995. MIT Press.]]
T. Sato . Parameterized logic programs where computing meets learning. In H. Kuchen. and K. Ueda, editors, Proceedings of Fifth International Symposium on Functional and Logic Programming (FLOPS-01) , volume 2024 of LNCS , pages 40 -- 60 , Tokyo, Japan , 2001 . Springer-Verlag .]] T. Sato. Parameterized logic programs where computing meets learning. In H. Kuchen. and K. Ueda, editors, Proceedings of Fifth International Symposium on Functional and Logic Programming (FLOPS-01), volume 2024 of LNCS, pages 40--60, Tokyo, Japan, 2001. Springer-Verlag.]]
T. Sato and Y. Kameya . PRISM: A Symbolic-Statistical Modeling Language . In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97) , pages 1330 -- 1339 , Nagoya, Japan , 1997 . Morgan Kaufmann.]] T. Sato and Y. Kameya. PRISM: A Symbolic-Statistical Modeling Language. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97), pages 1330--1339, Nagoya, Japan, 1997. Morgan Kaufmann.]]
T. Sato and Y. Kameya . A Viterbi-like algorithm and EM learning for statistical abduction. In R. Dybowski, J. Myers, and S. Parsons, editors , Workshop Notes of UAI-00 Workshop on Fusion of Domain Knowledge with Data for Decision Support , Stanford, CA, USA , 2000 .]] T. Sato and Y. Kameya. A Viterbi-like algorithm and EM learning for statistical abduction. In R. Dybowski, J. Myers, and S. Parsons, editors, Workshop Notes of UAI-00 Workshop on Fusion of Domain Knowledge with Data for Decision Support, Stanford, CA, USA, 2000.]]
E. Segal , A. Battle , and D. Koller . Decomposing Gene Expression into Cellular Processes. In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors , Proceedings of the Pacific Symposium on Biocomputing , pages 89 -- 100 , Kauai, Hawaii, USA , 2003 . World Scientific.]] E. Segal, A. Battle, and D. Koller. Decomposing Gene Expression into Cellular Processes. In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing, pages 89--100, Kauai, Hawaii, USA, 2003. World Scientific.]]
E. Y. Shapiro . Algorithmic Program Debugging . MIT Press , 1983 .]] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.]]
E. Y. Shapiro . Logic Programs with Uncertainties: A Tool for Implementing Expert Systems. In A. Bundy, editor , Proceedings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-1983) , pages 529 -- 532 , Karlsruhe, Germany , 1983 . William Kaufmann.]] E. Y. Shapiro. Logic Programs with Uncertainties: A Tool for Implementing Expert Systems. In A. Bundy, editor, Proceedings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-1983), pages 529--532, Karlsruhe, Germany, 1983. William Kaufmann.]]
B. Taskar , E. Segal , and D. Koller . Probabilistic clustering in relational data. In B. Nebel, editor , Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01) , pages 870 -- 887 , Seattle, Washington, USA , 2001 . Morgan Kaufmann.]] B. Taskar, E. Segal, and D. Koller. Probabilistic clustering in relational data. In B. Nebel, editor, Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 870--87, Seattle, Washington, USA, 2001. Morgan Kaufmann.]]
R. J. Williams and D. Zipser . Gradient-Based Learning Algorithms for Recurrent Networks and Their Computatinal Complexity . In Y. Chauvin and D. E. Rumelhart, editors, Back-propagation:Theory, Architectures and Applications. Lawrence Erlbaum , Hills-dale, NJ : Erlbaum , 1995 .]] R. J. Williams and D. Zipser. Gradient-Based Learning Algorithms for Recurrent Networks and Their Computatinal Complexity. In Y. Chauvin and D. E. Rumelhart, editors, Back-propagation:Theory, Architectures and Applications. Lawrence Erlbaum, Hills-dale, NJ: Erlbaum, 1995.]]
S. Wrobel . First Order Theory Refinement . In L. De Raedt , editor, Advances in Inductive Logic Programming. IOS Press , 1996 .]] S. Wrobel. First Order Theory Refinement. In L. De Raedt, editor, Advances in Inductive Logic Programming. IOS Press, 1996.]]