Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy

Annals of Neurology - Tập 89 Số 3 - Trang 426-443 - 2021
Gavin J.B. Elias1,2, Alexandre Boutet1,3,2, Suresh E. Joel4, Jürgen Germann1, Dave Gwun1, Clemens Neudorfer1, Robert Gramer1, Musleh Algarni5,2, Vijayashankar Paramanandam5,2, Sreeram Prasad5,2, Michelle E. Beyn1, Andreas Horn6, Radhika Madhavan4, Manish Ranjan1, Caroline Lozano1, Andrea A. Kühn6, Jeffrey Ashe4, Walter Kucharczyk3,2, Renato P. Munhoz5,2, Peter Giacobbe7, Sidney H. Kennedy8,2, D. Blake Woodside8, Suneil K. Kalia1,2, Alfonso Fasano5,2, Mojgan Hodaie1,2, Andrés M. Lozano1,2
1Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
2Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
3Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
4GE Global Research, Toronto, Ontario, Canada
5Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
6Movement Disorders and Neuromodulation Unit, Department for Neurology Charité‐Universitätsmedizin Berlin Germany
7Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
8Centre for Mental Health, University Health Network, Toronto, Ontario, Canada

Tóm tắt

Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment‐resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high‐resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above‐mean and below‐mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient‐specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426–443

Từ khóa


Tài liệu tham khảo

10.1016/S1567-424X(09)70414-3

10.1016/j.brs.2017.12.014

10.1002/mds.22735

10.1136/jnnp-2016-315504

10.1016/j.biopsych.2008.05.034

10.1016/S0140-6736(12)62188-6

10.1017/S1092852916000286

10.1002/ana.22089

10.1016/j.neuron.2013.01.020

10.1016/j.wneu.2016.11.012

10.1093/brain/awl127

10.1212/WNL.0000000000000315

10.1007/s00701-013-1782-1

10.1007/s11910-019-0961-8

10.1016/j.neuroimage.2018.09.061

10.1016/j.neuroimage.2018.08.068

10.1016/j.jneumeth.2010.01.026

10.1016/j.brs.2010.01.003

10.1002/ana.24974

10.1002/ana.24204

10.1016/j.nicl.2016.11.019

10.1002/ana.25567

10.1093/neuros/nyaa141

10.1093/brain/awz285

10.1136/jnnp-2019-320379

10.1016/j.brs.2019.05.001

10.1093/brain/awz046

10.1016/j.nicl.2018.01.008

10.1159/000486643

10.1016/j.nicl.2018.03.009

10.1159/000478273

10.1212/WNL.0000000000004646

10.1016/j.neuroimage.2017.07.012

10.1159/000448926

10.1227/NEU.0000000000001197

10.1002/ana.24187

10.1371/journal.pone.0099663

10.1016/j.neuroimage.2010.10.059

10.1093/brain/awp315

10.1136/jnnp.2007.126219

10.1016/j.neuroimage.2006.09.034

10.1136/jnnp.2008.160093

10.1016/j.neuroimage.2010.03.068

10.1371/journal.pone.0078934

10.1016/j.brs.2015.06.003

10.1002/mds.27839

10.1016/j.brs.2018.11.012

10.1016/j.brs.2016.02.004

10.1016/j.brs.2016.02.003

10.1016/j.biopsych.2018.12.019

10.1093/brain/awz236

10.1016/j.neuroimage.2017.02.004

10.1016/S2215-0366(17)30076-7

10.1038/npp.2013.244

10.1016/j.neuroimage.2017.05.015

10.1016/j.neuroimage.2014.12.002

FristonKJ AshburnerJT KiebelSJ et al.. Statistical parametric mapping: the analysis of functional brain images. 1st ed. Academic Press 2011. Available at:https://www.elsevier.com/books/statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/978-0-12-372560-8. .

10.1016/j.neuroimage.2010.09.025

10.1109/TBME.2014.2363494

10.1016/j.clinph.2003.10.033

10.1016/j.neuroimage.2006.01.021

10.3171/2015.4.JNS142741

10.1016/j.neuroimage.2006.04.227

10.1093/brain/awy292

10.1093/brain/awy161

10.1038/s41467-020-16734-3

10.1016/j.brs.2019.09.010

10.1016/j.wneu.2019.08.094

10.1038/nn.4361

10.1152/jn.00338.2011

10.1016/j.neuroimage.2012.10.082

10.1016/j.neuroimage.2013.04.127

10.1016/j.neuroimage.2015.08.048

10.1073/pnas.1405003111

10.3171/2008.10.JNS08763

Edlow BL, 2019, 7 tesla MRI of the ex vivo human brain at 100 micron resolution, Neuroscience, 6, 244

10.1007/s00429-020-02066-x

10.1016/j.brs.2018.03.009

10.1212/WNL.0000000000004295

10.1371/journal.pone.0093524

10.1152/jn.00989.2003

Pallavaram S, 2008, A new method for creating electrophysiological maps for DBS surgery and their application to surgical guidance, Med Image Comput Comput Assist Interv, 11, 670

10.1038/nrdp.2017.13

10.1002/j.2051-5545.2011.tb00061.x

10.1136/jnnp-2017-316907

10.1016/j.wneu.2017.07.136

10.1016/j.nicl.2020.102235

10.1016/j.brs.2013.03.008

10.1038/mp.2017.59

10.1016/j.biopsych.2014.03.029

10.1002/mds.21047

10.1001/archneur.64.9.1281

10.1002/mds.26545

10.1093/brain/awt304

10.1159/000362937

10.3389/fnins.2015.00028

10.1002/hbm.21262

10.3389/fnins.2015.00519

10.3174/ajnr.A6429

10.2176/nmc.oa.2016-0114

10.1038/s41386-020-0745-5

10.1371/journal.pone.0081878

10.1016/j.bbr.2013.04.051

10.3171/jns.2003.99.1.0089

Dormont D, 1994, A technique of measuring the precision of an MR‐guided stereotaxic installation using anatomic specimens, Am J Neuroradiol, 15, 365

10.1007/s00701-003-0181-4

10.1007/s00701-009-0393-3

10.1016/j.nicl.2017.10.004

10.1016/j.nicl.2020.102271

10.1016/j.neuroimage.2018.01.015

10.1088/1741-2552/ab3c95

10.1002/ana.25734

10.1093/brain/awaa148

McIntyre CC, 2002, Model‐based analysis of deep brain stimulation of the thalamus. In: Proceedings of the second joint 24th annual conference and the annual fall meeting of the Biomedical Engineering Society Engineering in Medicine and Biology, Annu Int Conf IEEE Eng Med Biol Soc, 3, 2047

10.1111/ner.12625

McIntyre CC, 2009, Customizing deep brain stimulation to the patient using computational models, Annu Int Conf IEEE Eng Med Biol Soc, 2009, 4228

10.3171/2018.11.JNS181338

10.1002/jmri.26321

10.1093/brain/awy278

10.1002/mds.27096

10.1007/s00415-014-7605-3