Pro-necrotic Activity of Cationic Mastoparan Peptides in Human Glioblastoma Multiforme Cells Via Membranolytic Action
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890. https://doi.org/10.1016/j.ncl.2007.07.002
Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710. https://doi.org/10.1101/gad.1596707
Wrensch M, Minn Y, Chew T et al (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncology 4:278–299
Porter KR, McCarthy BJ, Berbaum ML, Davis FG (2011) Conditional survival of all primary brain tumor patients by age, behavior, and histology. Neuroepidemiology 36:230–239. https://doi.org/10.1159/000327752
Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82. https://doi.org/10.1016/j.pharmthera.2015.05.005
Van Meir EG, Hadjipanayis CG, Norden AD et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193. https://doi.org/10.3322/caac.20069
Nakagawa T, Kubota T, Kabuto M et al (1996) Secretion of matrix metalloproteinase-2 (72 kD gelatinase/type IV collagenase = gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix. J Neuro-Oncol 28:13–24
Perego C, Vanoni C, Massari S et al (2002) Invasive behaviour of glioblastoma cell lines is associated with altered organisation of the cadherin-catenin adhesion system. J Cell Sci 115:3331–3340
Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426. https://doi.org/10.1172/JCI89587
Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr 1778:357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
Liu X, Li Y, Li Z et al (2015) Mechanism of anticancer effects of antimicrobial peptides. J Fiber Bioeng Informatics 8:25–36. https://doi.org/10.3993/jfbi03201503
Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194. https://doi.org/10.1016/j.ejphar.2009.08.043
Felício MR, Silva ON, Gonçalves S et al (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:1–9. https://doi.org/10.3389/fchem.2017.00005
Lee S, Baek J, Yoon K (2016) Differential properties of venom peptides and proteins in solitary vs. social hunting wasps. Toxins (Basel) 8:1–29. https://doi.org/10.3390/toxins8020032
Konno K, Kazuma K, Nihei K-I (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8:114. https://doi.org/10.3390/toxins8040114
Arbuzova A, Schwarz G (1999) Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochim Biophys Acta Biomembr 1420:139–152. https://doi.org/10.1016/S0005-2736(99)00098-X
Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177. https://doi.org/10.1016/j.plipres.2011.12.005
Giuliani A, Pirri G, Bozzi A et al (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460. https://doi.org/10.1007/s00018-008-8188-x
Galdiero S, Falanga A, Cantisani M et al (2013) Peptide-lipid interactions: experiments and applications. Int J Mol Sci 14:18758–18789. https://doi.org/10.3390/ijms140918758
Gaspar D, Veiga a S, Castanho M a RB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:1–16. https://doi.org/10.3389/fmicb.2013.00294
Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248. https://doi.org/10.1002/bip.10260
Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152. https://doi.org/10.1007/s13238-010-0004-3
Raynor RL, Kim YS, Zheng B et al (1992) Membrane interactions of mastoparan analogues related to their differential effects on protein kinase C, Na, K-ATPase and HL60 cells. FEBS Lett 307:275–279
Wu TM, Li ML (1999) The cytolytic action of all-D mastoparan M on tumor cell lines. Int J Tissue React 21:35–42
Yamada Y, Shinohara Y, Kakudo T et al (2005) Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303:1–7. https://doi.org/10.1016/j.ijpharm.2005.06.009
Wang K, Zhang B, Zhang W et al (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29:963–968. https://doi.org/10.1016/j.peptides.2008.01.015
dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R et al (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-Lymphocyte cell selectivity. Biochemistry 51:4898–4908. https://doi.org/10.1021/bi201608d
Zhang W, Li J, Liu L-W et al (2010) A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides 31:1832–1838. https://doi.org/10.1016/j.peptides.2010.06.019
Zhu L-N, Fu C-Y, Zhang S-F et al (2013) Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells. J Pept Sci 19:566–574. https://doi.org/10.1002/psc.2533
Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916. https://doi.org/10.1128/IAI.73.4.1907-1916.2005
Zhang X (2012) Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol Rep:2050–2056. https://doi.org/10.3892/or.2012.1715
Cummings BS, Wills LP, Schnellmann RG (2012) Measurement of cell death in mammalian cells. Curr. Protoc. Pharmacol. John Wiley & Sons, Inc., Hoboken, NJ, USA, In, pp. 1–24
Chazotte B (2011) Labeling mitochondria with TMRM or TMRE. Cold Spring Harb Protoc 6:895–897. https://doi.org/10.1101/pdb.prot5641
Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128. https://doi.org/10.1023/A:1022945107762
Gottlieb E, Armour S, Harris M, Thompson C (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717. https://doi.org/10.1038/sj.cdd.4401231
Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr. Protoc. Cell Biol. John Wiley & Sons, Inc., Hoboken, NJ, USA, In, pp. 1–23
Kim NS, Lee GM (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95:237–248. https://doi.org/10.1016/S0168-1656(02)00011-1
Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221. https://doi.org/10.1016/j.ceca.2011.03.003
Kennedy CL, Smith DJ, Lyras D et al (2009) Programmed cellular necrosis mediated by the pore-forming alpha-toxin from Clostridium septicum. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000516
dos Santos Cabrera MP, Arcisio-Miranda M, da Costa LC et al (2009) Interactions of mast cell degranulating peptides with model membranes: a comparative biophysical study. Arch Biochem Biophys 486:1–11. https://doi.org/10.1016/j.abb.2009.03.009
Arcisio-Miranda M, dos Santos Cabrera MP, Konno K et al (2008) Effects of the cationic antimicrobial peptide eumenitin from the venom of solitary wasp Eumenes rubronotatus in planar lipid bilayers: surface charge and pore formation activity. Toxicon 51:736–745. https://doi.org/10.1016/j.toxicon.2007.11.023
Leite NB, dos Santos AD, de Souza BM et al (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43:121–130. https://doi.org/10.1007/s00249-014-0945-1
de Azevedo RA, Figueiredo CR, Ferreira AK et al (2015) Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68:113–119. https://doi.org/10.1016/j.peptides.2014.09.024
Hilchie AL, Sharon AJ, Haney EF et al (2016) Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta Biomembr 1858:3195–3204. https://doi.org/10.1016/j.bbamem.2016.09.021
Konno K, Hisada M, Fontana R et al (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta - Protein Struct Mol Enzymol 1550:70–80. https://doi.org/10.1016/S0167-4838(01)00271-0
dos Santos Cabrera MP, Arcisio-Miranda M, Broggio Costa ST et al (2008) Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidatedC-terminus. J Pept Sci 14:661–669. https://doi.org/10.1002/psc.960
Souza BM, Mendes MA, Santos LD et al (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26:2157–2164. https://doi.org/10.1016/j.peptides.2005.04.026
Alvares DS, Fanani ML, Ruggiero Neto J, Wilke N (2016) The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim Biophys Acta Biomembr 1858:393–402. https://doi.org/10.1016/j.bbamem.2015.12.010
Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9:1–9. https://doi.org/10.1371/journal.pone.0091007
Nakao S, Komagoe K, Inoue T, Katsu T (2011) Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells. Biochim Biophys Acta Biomembr 1808:490–497. https://doi.org/10.1016/j.bbamem.2010.10.007
Huang Y, Feng Q, Yan Q et al (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15:73–81. https://doi.org/10.2174/1389557514666141107120954
Hou L, Liu K, Li Y et al (2016) Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J Cell Sci 129:3084–3090. https://doi.org/10.1242/jcs.184374
Birge RB, Boeltz S, Kumar S et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23:962–978. https://doi.org/10.1038/cdd.2016.11
Alvares DS, Ruggiero Neto J, Ambroggio EE (2017) Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide. Biochim Biophys Acta Biomembr 1859:1067–1074. https://doi.org/10.1016/j.bbamem.2017.03.002
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Ribeiro-Silva L, Queiroz FO, da Silva AMB et al (2016) Voltage-gated proton channel in human glioblastoma multiforme cells. ACS Chem Neurosci 7:864–869. https://doi.org/10.1021/acschemneuro.6b00083
Sonoda Y, Kasahara T, Yokota-Aizu E et al (1997) A suppressive role of p125FAK protein tyrosine kinase in hydrogen peroxide-induced apoptosis of T98G cells. Biochem Biophys Res Commun 241:769–774. https://doi.org/10.1006/bbrc.1997.7895
Chazotte B (2011) Labeling nuclear DNA with Hoechst 33342. Cold Spring Harb Protoc:83–85. https://doi.org/10.1101/pdb.prot5557
dos Santos Cabrera MP, Baldissera G, Silva-Gonçalves L da C, et al (2014) Combining experimental evidence and molecular dynamic simulations to understand the mechanism of action of the antimicrobial octapeptide Jelleine-I. Biochemistry 53:4857–4868. https://doi.org/10.1021/bi5003585
Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496. https://doi.org/10.1007/BF02531316
Luo P, Baldwin RL (1997) Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water †. Biochemistry 36:8413–8421. https://doi.org/10.1021/bi9707133
Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol, In, pp. 1–26