Prions hijack tunnelling nanotubes for intercellular spread

Nature Cell Biology - Tập 11 Số 3 - Trang 328-336 - 2009
Karine Gousset1, Edwin Schiff2,1, Christelle Langevin1, Zrinka Marijanovic1, Anna Caputo3,1, Duncan Browman1, Nicolas Chenouard4, Fabrice de Chaumont4, Angelo Martino5, Jost Enninga6, Jean‐Christophe Olivo‐Marín4, Daniela N. Männel2, Chiara Zurzolo3,1
1Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, France
2Department of Immunology, University of Regensburg, F.-J.-Strauss-Allee, Regensburg, Germany
3Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli 'Federico II', via Pansini 5, Naples, Italy
4Unité d'Analyse d'Images Quantitative, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, France
5Unité de recherché de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, France
6Groupe “Dynamique des interactions hôte-pathogène”, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mabbott, N. A. & MacPherson, G. G. Prions and their lethal journey to the brain. Nature Rev. Microbiol. 4, 201–11 (2006).

Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).

Leblanc, P. et al. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J. 25, 2674–2685 (2006).

Liu, T. et al. Intercellular transfer of the cellular prion protein. J. Biol. Chem. 277, 47671–47678 (2002).

Aucouturier, P. et al. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest. 108, 703–708 (2001).

Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

Prinz, M. et al. Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA 99, 919–924 (2002).

Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

Onfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting edge: Membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513 (2004).

Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D. & Kornberg, T. B. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437, 560–563 (2005).

Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biol. 9, 310–315 (2007).

Chinnery, H. R., Pearlman, E. & McMenamin, P. G. Cutting edge: Membrane nanotubes in vivo: a feature of MHCII+ cells in the mouse cornea. J. Immunol. 180, 5779–5783 (2008).

Demontis, F. & Dahmann, C. Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev. Dyn. 236, 3408–3418 (2007).

Gerdes, H.-H., Bukoreshtliev, N. V. & Barroso, J. F. V. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett. 581, 2194–2201 (2007).

Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol. 10, 212–219 (2008).

Qi, Y., Wang, J. K. T., McMillian, M. & Chikaraishi, D. M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225 (1997).

Mahal, S. P. et al. Prion strain discrimination in cell culture: the cell panel assay. Proc. Natl Acad. Sci. USA 104, 20908–20913 (2007).

Sherer, N. M. & Mothes, W. Cytonemes and tunneling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol. 18, 414–420 (2008).

Reed, B. C. et al. GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and myosin VI: evidence supporting an adapter function for GLUT1CBP. Mol. Biol. Cell 16, 4183–4201 (2005).

Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

Magalhaes, A. C. et al. Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J. Neurosci. 25, 5207–5216 (2005).

Taraboulos, A., Serban, D. & Prusiner, S. B. Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J. Cell Biol. 110, 2117–2132 (1990).

Watkins, S. C. & Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).

Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol. 83, 267–271 (2002).

McBride, P. A. & Beekes, M. Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci. Lett. 265, 135–138 (1999).

Lambrecht, B. N. Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation. Respir. Res. 2, 133–138 (2001).

Defaweux, V. et al. Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer's patches: potential sites for neuroinvasion in prion diseases. Microsc. Res. Tech. 66, 1–9 (2005).

Dorban, G. et al. Oral scrapie infection modifies the homeostasis of Peyer's patches' dendritic cells. Histochem. Cell Biol. 128, 243–251 (2007).

Luhr, K. et al. Scrapie protein degradation by cysteine proteases in CD11c+ dendritic cells and GT1-1 neuronal cells. J. Virol. 78, 4776–4782 (2004).

Vella, L. J. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211, 582–590 (2007).

Kanu, N. et al. Transfer of scrapie prion infectivity by cell contact in culture. Curr. Biol. 12, 523–530 (2002).

Paquet, S. et al. Efficient dissemination of prions through preferential transmission to nearby cells. J. Gen. Virol. 88, 706–713 (2007).

Onfelt, B. et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476–8483 (2006).

Brejot, T. et al. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis. Exp. Neurol. 198, 167–182 (2006).

Cronier, S., Laude, H. & Peyrin, J. M. Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc. Natl Acad. Sci. USA 101, 12271–12276 (2004).

Mederle, I. et al. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect. Immun. 70, 303–314 (2002).

Kaech, S. & Banker, G. Culturing hippocampal neurons. Nature Protocols 1, 2406–2415 (2006).