Prime ideals and Noetherian properties in vector lattices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence (2002)
Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht. Reprint of the 1985 original (2006)
Aliprantis, C.D., Tourky, R.: Cones and Duality. Graduate Studies in Mathematics, vol. 84. American Mathematical Society, Providence (2007)
Cabrera, M., Dales, H.G., Rodríguez, Á.: Maximal left ideals in Banach algebras. Bull. Lond. Math. Soc. 52(1), 1–15 (2020)
Huijsmans, C.B.: Prime Ideals in Commutative Rings and in Riesz Spaces. Ph.D. Thesis. Leiden University (1973)
Kaniuth, E.: A Course in Commutative Banach Algebras. Graduate Texts in Mathematics, vol. 246. Springer, New York (2009)
Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces. Vol. I. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York. North-Holland Mathematical Library (1971)
Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York. Die Grundlehren der mathematischen Wissenschaften, Band 215 (1974)
Wortel, M.: Lexicographic cones and the ordered projective tensor product. In: Positivity and noncommutative analysis, Trends Math., pp. 601–609. Birkhäuser/Springer, Cham (2019)
Yosida, K.: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18, 339–342 (1942)
Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1996)