Prime ideals and Noetherian properties in vector lattices

Positivity - Tập 26 Số 1 - 2022
Marko Kandić1,2, Mark Roelands3
1Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
2Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
3Mathematical Institute, Leiden University, Leiden, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence (2002)

Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht. Reprint of the 1985 original (2006)

Aliprantis, C.D., Tourky, R.: Cones and Duality. Graduate Studies in Mathematics, vol. 84. American Mathematical Society, Providence (2007)

Cabrera, M., Dales, H.G., Rodríguez, Á.: Maximal left ideals in Banach algebras. Bull. Lond. Math. Soc. 52(1), 1–15 (2020)

Cohen, I.S.: Commutative rings with restricted minimum condition. Duke Math. J. 17, 27–42 (1950)

Huijsmans, C.B.: Prime Ideals in Commutative Rings and in Riesz Spaces. Ph.D. Thesis. Leiden University (1973)

Johnson, D.G., Kist, J.E.: Prime ideals in vector lattices. Can. J. Math. 14, 517–528 (1962)

Kaniuth, E.: A Course in Commutative Banach Algebras. Graduate Texts in Mathematics, vol. 246. Springer, New York (2009)

Kaplansky, I.: Elementary divisors and modules. Trans. Am. Math. Soc. 66, 464–491 (1949)

Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces. Vol. I. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York. North-Holland Mathematical Library (1971)

Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York. Die Grundlehren der mathematischen Wissenschaften, Band 215 (1974)

Wortel, M.: Lexicographic cones and the ordered projective tensor product. In: Positivity and noncommutative analysis, Trends Math., pp. 601–609. Birkhäuser/Springer, Cham (2019)

Yosida, K.: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18, 339–342 (1942)

Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1996)