Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades

Remote Sensing - Tập 12 Số 5 - Trang 826
Gemma Kulk1, Trevor Platt1, James Dingle1, T. J. Jackson1, Bror Jönsson1, Heather Bouman2, Marcel Babin3, Robert J. W. Brewin4, Martina A. Doblin3, Marta Estrada5, F. G. Figueiras5, Ken Furuya6, Natalia González7, Hafsteinn Guðfinnsson8, Kristinn Guðmundsson8, Bangqin Huang9, Tomonori Isada10, Žarko Kovač11, Vivian A. Lutz, Emilio Marañón12, Mini Raman13, Katherine Richardson14, Patrick Rozema15, Willem H. van de Poll15, Valeria Segura, Gavin H. Tilstone1, Julia Uitz3, Virginie van Dongen‐Vogels16, Takashi Yoshikawa6, Shubha Sathyendranath1
1Plymouth Marine Laboratory,
2Department of Earth Sciences [Oxford]
3Laboratoire d'océanographie de Villefranche
4University of Exeter,
5Consejo Superior de Investigaciones Cientificas = Spanish National Research Council
6The University of Tokyo,
7Universidad Rey Juan Carlos, Madrid
8Marine and Freshwater Research Institute
9[Xiamen University]
10Hokkaido Information University
11University of Split
12Universidade de Vigo
13Indian Space Research Organisation
14University of Copenhagen = Københavns Universitet
15University of Groningen, Groningen
16Australian Institute of Marine Science [Townsville]

Tóm tắt

Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr − 1 over the period of 1998–2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by ±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive.

Từ khóa


Tài liệu tham khảo

Lurin, 1994, Global terrestrial net primary production, Glob. Chang. Newsl., 19, 6

Longhurst, 1995, An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245, 10.1093/plankt/17.6.1245

Field, 1998, Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, 281, 237, 10.1126/science.281.5374.237

Carr, 2006, A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Part II Top. Stud. Oceanogr., 53, 741, 10.1016/j.dsr2.2006.01.028

Buitenhuis, 2013, Combined constraints on global ocean primary production using observations and models, Glob. Biogeochem. Cycles, 27, 847, 10.1002/gbc.20074

Falkowski, 1998, Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 200, 10.1126/science.281.5374.200

Antoine, 1996, Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Glob. Biogeochem. Cycles, 10, 57, 10.1029/95GB02832

Axell, 2016, The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 9, s235

Andrew, 2018, Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141, 10.5194/essd-10-2141-2018

Sathyendranath, S., Brewin, R.J.W., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Couto, A.B., Dingle, J., and Doerffer, R. (2019). An ocean-colour time series for use in climate studies: The experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors, 19.

Doney, 2009, Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula, Science, 323, 1470, 10.1126/science.1164533

Arrigo, 2015, Continued increases in Arctic Ocean primary production, Prog. Oceanogr., 136, 60, 10.1016/j.pocean.2015.05.002

Randelhoff, 2019, The evolution of light and vertical mixing across a phytoplankton ice-edge bloom, Elem. Sci. Anthr., 7, 20, 10.1525/elementa.357

Oziel, 2019, Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay, Elem. Sci. Anthr., 7, 34, 10.1525/elementa.372

Karl, 1996, Seasonal and interannual variability in primary production and particle flux at station ALOHA, Deep-Sea Res. Part II Top. Stud. Oceanogr., 43, 539, 10.1016/0967-0645(96)00002-1

Longhurst, A.R. (2007). Ecological Geography of the Sea, Elsevier Academic Press. [2nd ed.].

Schneider, 2008, North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, 2

Martinez, 2009, Climate-driven basin-scale decadal oscillations of oceanic phytoplankton, Science, 326, 1253, 10.1126/science.1177012

Racault, 2017, Impact of El Niño variability on oceanic phytoplankton, Front. Mar. Sci., 4, 133, 10.3389/fmars.2017.00133

Lan, 2013, Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean, Clim. Chang., 119, 63, 10.1007/s10584-012-0637-8

Taboada, 2019, Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations, Prog. Oceanogr., 170, 28, 10.1016/j.pocean.2018.10.010

Westberry, 2008, Carbon-based primary productivity modeling with vertically resolved photoacclimation, Glob. Biogeochem. Cycles, 22, 1, 10.1029/2007GB003078

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., and Genova, R. (2014). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. (2013). Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Behrenfeld, 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444, 752, 10.1038/nature05317

Chavez, 2011, Marine Primary Production in Relation to Climate Variability and Change, Annu. Rev. Mar. Sci., 3, 227, 10.1146/annurev.marine.010908.163917

Polovina, 2011, Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming, ICES J. Mar. Sci., 68, 986, 10.1093/icesjms/fsq198

Gregg, 2019, Global ocean primary production trends in the modern ocean color satellite record (1998–2015), Environ. Res. Lett., 14, 124011, 10.1088/1748-9326/ab4667

Saba, 2010, Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT, Glob. Biogeochem. Cycles, 24, 1, 10.1029/2009GB003655

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., and Genova, R. (2014). Ocean systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Platt, 1988, Oceanic primary production: Estimation by remote sensing at local and regional scales, Science, 241, 1613, 10.1126/science.241.4873.1613

Platt, 1999, Spatial structure of pelagic ecosystem processes in the global ocean, Ecosystems, 2, 384, 10.1007/s100219900088

Bouman, 2018, Photosynthesis-irradiance parameters of marine phytoplankton: Synthesis of a global data set, Earth Syst. Sci. Data, 10, 251, 10.5194/essd-10-251-2018

Li, 1993, Remote sensing of water-column primary production, Measurement of Primary Production from the Molecular to the Global Scale, Volume 197, 236

Friedrichs, 2009, Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean, J. Mar. Syst., 76, 113, 10.1016/j.jmarsys.2008.05.010

Jassby, 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21, 540, 10.4319/lo.1976.21.4.0540

Platt, 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 103

Platt, 1983, Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton, Limnol. Oceanogr., 28, 320, 10.4319/lo.1983.28.2.0320

Platt, 1992, Nutrient control of phytoplankton photosynthesis in the Western North Atlantic, Nature, 356, 229, 10.1038/356229a0

Bouman, 2005, Dependence of light-saturated photosynthesis on temperature and community structure, Deep-Sea Res. Part I Oceanogr. Res. Pap., 52, 1284, 10.1016/j.dsr.2005.01.008

Huot, 2007, Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean, Biogeosciences, 4, 853, 10.5194/bg-4-853-2007

Uitz, 2008, Relating phytoplankton photophysiological properties to community structure on large scale, Limnol. Oceanogr., 53, 614, 10.4319/lo.2008.53.2.0614

Uitz, 2010, Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations, Glob. Biogeochem. Cycles, 24, GB3016, 10.1029/2009GB003680

Mélin, F. (1993). Potentiel de la Télédétection pour L’analyse des Proprietés Optiques du Système Océan-atmosphère et Application à L’estimation de la Photosynths̀e Phytoplanctonique. [Ph.D. Thesis, Université Toulouse III].

Mélin, F., and Hoepffner, N. (2004). Global Marine Primary Production: A Satellite View, Institute for Environment and Sustainability, ISPRA. Technical Report.

Platt, 1993, Estimators of primary production for interpretation of remotely sensed data on ocean color, J. Geophys. Res., 98, 14561, 10.1029/93JC01001

Sathyendranath, 2007, Spectral effects in bio-optical control on the ocean system, Oceanologia, 49, 5

Sathyendranath, 2009, Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea, Mar. Ecol. Prog. Ser., 383, 73, 10.3354/meps07998

Sathyendranath, S., Platt, T., Žarko, K., Dingle, J., Jackson, T., Brewin, R.J.W., Franks, P., Nón, E.M., Kulk, G., and Bouman, H. (2020). Reconciling models of primary production and photoacclimation. Appl. Opt., submitted.

Platt, 1991, Biological production models as elements of coupled, atmosphere-ocean models for climate research, J. Geophys. Res., 96, 2585, 10.1029/90JC02305

Kyewalyanga, 1992, Ocean primary production calculated by spectral and broad-band models, Mar. Ecol. Prog. Ser., 85, 171, 10.3354/meps085171

Sathyendranath, 1995, Regionally and seasonally differentiated primary production in the North Atlantic, Deep-Sea Res. I, 42, 1773, 10.1016/0967-0637(95)00059-F

Lobanova, P., Tilstone, G.H., Bashmachnikov, I., and Brotas, V. (2018). Accuracy assessment of primary production models with and without photoinhibition using Ocean-Colour climate change initiative data in the North East Atlantic Ocean. Remote Sens., 10.

Sathyendranath, S., Jackson, T., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Clements, O., Cipollini, P., Danne, O., and Dingle, J. (2019). ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 4.0 Data, Centre for Environmental Data Analysis. Technical Report.

Vantrepotte, 2017, Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data, Remote Sens. Environ., 203, 139, 10.1016/j.rse.2017.03.039

Bouman, H.A., Platt, T., Doblin, M.A., Figueiras, F.G., Gudmundsson, K., Gudfinnsson, H.G., Huang, B., Hickman, A., Hiscock, M.R., and Jackson, T. (2017). A global dataset of photosynthesis-irradiance parameters for marine phytoplankton. Pangaea, 874087.

Thomas, 1970, On nitrogen deficiency in tropical Pacific oceanic phytoplankton: Photosynthetic parameters in poor and rich water, Limnol. Oceanogr., 15, 380, 10.4319/lo.1970.15.3.0380

Hameedi, 1977, Changes in specific photosynthetic rate of oceanic phytoplankton from the northeast Pacific Ocean, Helgoländer Wissenschaftliche Meeresuntersuchungen, 30, 62, 10.1007/BF02207825

Cole, 1984, Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay, Mar. Ecol. Prog. Ser., 17, 15, 10.3354/meps017015

Harding, 1985, Photosynthesis patterns in Chesapeake Bay phytoplankton: Short- and long-term responses of P-l curve parameters to light, Mar. Ecol. Prog. Ser., 26, 99, 10.3354/meps026099

Harding, 1986, Phytoplankton production in two east coast estuaries: Photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays, Estuar. Coast. Shelf Sci., 23, 773, 10.1016/0272-7714(86)90074-0

Forbes, 1986, Determination of photosynthetic capacity in coastal marine phytoplankton: Effects of assay irradiance and variability of photosynthetic parameters, Mar. Ecol. Prog. Ser., 32, 181, 10.3354/meps032181

Welschmeyer, 1991, Phytoplankton growth and herbivory in the subarctic Pacific: A chemotaxonomic analysis, Limnol. Oceanogr., 36, 1631, 10.4319/lo.1991.36.8.1631

Gallegos, 1992, Phytoplankton photosynthesis, productivity, and species composition in a eutrophic eastuary: Comparison of bloom and non-bloom assemblages, Mar. Ecol. Prog. Ser., 81, 257, 10.3354/meps081257

Vant, 1993, Phytoplankton photosynthesis and growth in contrasting regions of Manukau harbour, New Zealand, N. Z. J. Mar. Freshw. Res., 27, 295, 10.1080/00288330.1993.9516570

Welschmeyer, 1993, Primary production in the subarctic Pacific Ocean: Project SUPER, Prog. Oceanogr., 32, 101, 10.1016/0079-6611(93)90010-B

Lindley, 1995, Phytoplankton photosynthesis parameters along 140 ∘W in the equatorial Pacific, Deep-Sea Res. Part II, 42, 441, 10.1016/0967-0645(95)00029-P

Barber, 1996, Primary productivity and its regulation in the equatorial pacific during and following the 1991-1992 El Nino, Deep-Sea Res. Part II Top. Stud. Oceanogr., 43, 933, 10.1016/0967-0645(96)00035-5

Vant, 1996, Size-fractionated phytoplankton biomass and photosynthesis in Manukau Harbour, New Zealand, N. Z. J. Mar. Freshw. Res., 30, 115, 10.1080/00288330.1996.9516701

Gallegos, 1996, An incubation procedure for estimating carbon-to-chlorophyll ratios and growth-irradiance relationships of estuarine phytoplankton, Mar. Ecol. Prog. Ser., 138, 275, 10.3354/meps138275

Hawes, 1997, Photosynthetic parameters in water masses in the vicinity of the Chatham rise, south pacific ocean, during late summer, N. Z. J. Mar. Freshw. Res., 31, 25, 10.1080/00288330.1997.9516742

Gibbs, 1997, Seasonal changes in factors controlling phytoplankton growth in Beatrix Bay, New Zealand, N. Z. J. Mar. Freshw. Res., 31, 237, 10.1080/00288330.1997.9516761

Gall, 1999, Predicting rates of primary production in the vicinity of the Subtropical Convergence east of New Zealand, N. Z. J. Mar. Freshw. Res., 33, 443, 10.1080/00288330.1999.9516890

Macedo, 2001, Annual Variation of Environmental Variables, Phytoplankton Species Composition and Photosynthetic Parameters in a Coastal Lagoon, J. Plankton Res., 23, 719, 10.1093/plankt/23.7.719

Johnson, 2002, Photosynthetic physiology and physicochemical forcing in the Arabian Sea, 1995, Deep-Sea Res. Part I Oceanogr. Res. Pap., 49, 415, 10.1016/S0967-0637(01)00068-1

Baumgartner, 2004, Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: Summer and autumn 1998, Deep-Sea Res. Part II Top. Stud. Oceanogr., 51, 799, 10.1016/j.dsr2.2004.05.015

Vernet, M. (2004). Production vs Irradiance data from RVIB Nathaniel B. Palmer cruise NBP0103 in the Southern Ocean in 2001 (SOGLOBEC project). Biol. Chem. Oceanogr. Data Manag. Off.

Daneri, 2007, Primary production and phytoplanktonic biomass in shallow marine environments of central Chile: Effect of coastal geomorphology, Estuar. Coast. Shelf Sci., 73, 137, 10.1016/j.ecss.2006.12.013

Strom, 2010, Light limitation of summer primary production in the coastal Gulf of Alaska: Physiological and environmental causes, Mar. Ecol. Prog. Ser., 402, 45, 10.3354/meps08456

Huot, Y. (2011). MALINA: Photosynthetic parameters. Lefe Cyber Database, 30091, Available online: http://www.obs-vlfr.fr/proof/php/malina/x_datalist_1.php?xxop=malina&xxcamp=malina.

2012, Structure-Dependent phytoplankton photosynthesis and production rates: Implications for the formation, maintenance, and decline of plankton patches, Mar. Ecol. Prog. Ser., 468, 15, 10.3354/meps09968

Vernet, 2012, Primary production throughout austral fall, during a time of decreasing daylength in the western Antarctic Peninsula, Mar. Ecol. Prog. Ser., 452, 45, 10.3354/meps09704

Huot, 2013, Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure, Biogeosciences, 10, 3445, 10.5194/bg-10-3445-2013

Sobrino, 2015, Effect of solar UVR on the production of particulate and dissolved organic carbon from phytoplankton assemblages in the Indian Ocean, Mar. Ecol. Prog. Ser., 535, 47, 10.3354/meps11414

Platt, 2016, Recovery of photosynthesis parameters from in situ profiles of phytoplankton production, ICES J. Mar. Sci., 73, 275, 10.1093/icesjms/fsv204

Richardson, 2016, Constraining the distribution of photosynthetic parameters in the global ocean, Front. Mar. Sci., 3, 269, 10.3389/fmars.2016.00269

Strom, 2016, Spring phytoplankton in the eastern coastal Gulf of Alaska: Photosynthesis and production during high and low bloom years, Deep-Sea Res. Part II Top. Stud. Oceanogr., 132, 107, 10.1016/j.dsr2.2015.05.003

Chakraborty, 2017, Photophysiological and light absorption properties of phytoplankton communities in the river-dominated margin of the northern Gulf of Mexico, J. Geophys. Res. Ocean., 122, 4922, 10.1002/2016JC012092

Endo, 2017, Phytoplankton community responses to iron and CO2 enrichment in different biogeochemical regions of the Southern Ocean, Polar Biol., 40, 2143, 10.1007/s00300-017-2130-3

Fragoso, 2017, Spring phytoplankton communities of the Labrador Sea (2005–2014): Pigment signatures, photophysiology and elemental ratios, Biogeosciences, 14, 1235, 10.5194/bg-14-1235-2017

Fragoso, G.M., Poulton, A.J., Yashayaev, I.M., Head, E.J., and Purdie, D.A. (2017). Spring phytoplankton communities of the Labrador Sea (2005–2014): Pigment signatures, photophysiology and elemental ratios. Pangaea, 871872.

Endo, H., Hattori, H., Mishima, T., Hashida, G., Sasaki, H., Nishioka, J., and Suzuki, K. (2018). Seawater carbonate chemistry and biomarker pigments and phytoplankton community composition in different biogeochemical regions of the Southern Ocean. Pangaea, 888447.

Briggs, 2018, A multi-method autonomous assessment of primary productivity and export efficiency in the springtime North Atlantic, Biogeosciences, 15, 4515, 10.5194/bg-15-4515-2018

Perry, M.J. (2019, April 01). Primary Productivity Measurements from On-Deck Bottle Incubations during R/V Knorr Cruise KN193-03 and R/V Bjarni Saemundsson Cruises B10-2008 and B4-2008 to the Subpolar North Atlantic, Iceland Basin in 2008. Available online: https://www.bco-dmo.org/dataset/746215.

Platt, 1976, The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J. Phycol., 12, 421, 10.1111/j.0022-3646.1976.00421.x

Brewin, 2011, Model of phytoplankton absorption based on three size classes, Appl. Opt., 50, 4535, 10.1364/AO.50.004535

Brewin, 2015, Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class, Remote Sens. Environ., 168, 437, 10.1016/j.rse.2015.07.004

Santer, 2008, Consistency of modelled and observed temperature trends in the tropical troposhpere, Int. J. Climatol., 28, 1703, 10.1002/joc.1756

Kao, 2009, Contrasting Eastern-Pacific and Central-Pacific types of ENSO, J. Clim., 22, 615, 10.1175/2008JCLI2309.1

Lewis, 1985, Absorption and photosynthesis action spectra for natural phytoplankton populations: Implications for prodution in the open ocean, Limnol. Oceanogr., 30, 794, 10.4319/lo.1985.30.4.0794

Platt, 1988, Ocean primary production and available light: Further algorithms for remote sensing, Deep Sea Res. Part A Oceanogr. Res. Pap., 35, 855, 10.1016/0198-0149(88)90064-7

Sathyendranath, 1989, Computation of aquatic primary production: Extended formalism to include effect of angular and spectral distribution of light, Limnol. Oceanogr., 34, 188, 10.4319/lo.1989.34.1.0188

Platt, 1990, Primary prodution by phytoplankton: Analytic solutions for daily rates per unit area of water surface, Proc. R. Soc. B Biol. Sci., 241, 101, 10.1098/rspb.1990.0072

Cochran, 2019, Primary Production Distribution, Encyclopedia of Ocean Sciences, Volume 1, 635

Holligan, 1999, Photosynthetic parameters of phytoplankton from 50∘N to 50∘S in the Atlantic Ocean, Mar. Ecol. Prog. Ser., 176, 191, 10.3354/meps176191

Platt, 2008, Operational mode estimation of primary production at large geographical scales, Remote Sens. Environ., 112, 3437, 10.1016/j.rse.2007.11.018

Xie, 2015, Photosynthetic parameters in the northern South China Sea in relation to phytoplankton community structure, J. Geophys. Res. Ocean., 120, 4187, 10.1002/2014JC010415

Robinson, 2018, Size class dependent relationships between temperature and phytoplankton photosynthesis-irradiance parameters in the Atlantic Ocean, Front. Mar. Sci., 4, 435, 10.3389/fmars.2017.00435

Eppley, 1972, Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063

Sathyendranath, 2014, Remote sensing of assimilation number for marine phytoplankton, Remote Sens. Environ., 146, 87, 10.1016/j.rse.2013.10.032

Rey, F. (1990, January 12–16). Photosynthesis-irradiance relationships in natural phytoplankton populations of the Barents Sea. Proceedings of the Pro Mare Symposium on Polr Marine Ecology, Trondheim, Norway.

Henson, 2010, Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621, 10.5194/bg-7-621-2010

Sathyendranath, 1988, The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing, J. Geophys. Res., 93, 9270, 10.1029/JC093iC08p09270

Sathyendranath, 2001, Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches, Int. J. Remote Sens., 22, 249, 10.1080/014311601449925

Jerlov, N.G., and Nielsen, E.S. (1974). Optical properties of pure seawater. Optical Aspects of Oceanography, Academic.

Ulloa, 1994, Effect of the particle-size distribution on the backscattering ratio in seawater, Appl. Opt., 33, 7070, 10.1364/AO.33.007070

Loisel, 1998, Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnol. Oceanogr., 43, 847, 10.4319/lo.1998.43.5.0847

Sathyendranath, 1989, Remote sensing of oceanic primary production: Computations using a spectral model, Deep-Sea Res. I, 36, 431, 10.1016/0198-0149(89)90046-0