Tần suất của các rối loạn huyết học di truyền và mối liên hệ với sốt rét và thiếu máu ở trẻ em Malawi

Blood Advances - Tập 2 - Trang 3035-3044 - 2018
Patrick T. McGann1,2,3, Anne M. Williams4,5,6, Graham Ellis7,8, Kathryn E. McElhinney1, Laurel Romano1, Julia Woodall1, Thad A. Howard1, Gerald Tegha8, Robert Krysiak8, R. Murray Lark9, E. Louise Ander10, Carine Mapango11, Kenneth I. Ataga9,12, Satish Gopal9,12, Nigel S. Key9,12, Russell E. Ware1,2,3, Parminder S. Suchdev4,5,6,13
1Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
3Center for Global Health, Cincinnati Children's Hospital Medical Center, Cincinnati, OH;
4Department of Pediatrics, Emory University, Atlanta, GA
5Hubert Department of Global Health, Emory University, Atlanta, GA
6Nutrition Branch, Centers for Disease Control and Prevention, Atlanta, GA;
7Naval Medical Center San Diego, San Diego, CA
8University of North Carolina Project, Lilongwe, Malawi
9School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom;
10British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, United Kingdom;
11Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Ga
12Department of Medicine, University of North Carolina, Chapel Hill, NC
13Emory Global Health Institute, Emory, GA

Tóm tắt

Tóm tắtTại khu vực châu Phi cận Sahara, các nguyên nhân di truyền của thiếu máu rất phổ biến, nhưng có rất ít dữ liệu về tần suất địa lý và sự đồng di truyền của những tình trạng này cũng như sự ảnh hưởng tổng thể của chúng đối với thiếu máu ở trẻ em. Để trả lời những câu hỏi này tại Malawi, chúng tôi đã thực hiện phân tích thứ cấp từ Khảo sát Vi chất dinh dưỡng Malawi 2015-2016, một khảo sát đại diện quốc gia và khu vực nhằm ước tính tần suất thiếu hụt vi chất dinh dưỡng và đánh giá cả yếu tố di truyền và không di truyền gây thiếu máu. Trẻ em từ 6 đến 59 tháng tuổi đã được lấy mẫu từ 105 cụm trong Khảo sát Dân số và Sức khỏe Malawi 2015-2016. Hemoglobin, ferritin, protein gắn retinol, bệnh sốt rét và các dấu ấn sinh học viêm đã được đo từ máu tĩnh mạch. Các nghiên cứu phân tử đã được thực hiện bằng cách sử dụng các điểm máu khô để xác định sự hiện diện của bệnh hoặc đặc điểm hồng cầu hình liềm, đặc điểm α-thalassemia, và thiếu hụt glucose-6-phosphate dehydrogenase (G6PD). Trong số 1279 trẻ em đủ điều kiện, 1071 trẻ em đã được đưa vào phân tích cuối cùng. Thiếu máu, thiếu sắt và bệnh sốt rét rất phổ biến, lần lượt ảnh hưởng đến 30.9%, 21.5% và 27.8% trẻ tham gia. Đặc điểm α-thalassemia rất phổ biến (>40% trẻ thể hiện sự mất đi của 1 [33.1%] hoặc 2 [10.0%] gen α-globin) và liên quan đến tần suất thiếu máu cao hơn (P < .001). Khoảng 20% nam giới có thiếu hụt G6PD, tình trạng này liên quan đến việc bảo vệ 1.0 g/dL giảm hemoglobin trong thời gian nhiễm bệnh sốt rét (P = .02). Các dữ liệu này cho thấy các rối loạn huyết học di truyền rất phổ biến và có khả năng đóng vai trò quan trọng trong việc gia tăng tần suất thiếu máu và sốt rét ở trẻ em Malawi.

Từ khóa


Tài liệu tham khảo

Kwiatkowski, 2005, How malaria has affected the human genome and what human genetics can teach us about malaria, Am J Hum Genet, 77, 171, 10.1086/432519 Fortin, 2002, Susceptibility to malaria as a complex trait: big pressure from a tiny creature, Hum Mol Genet, 11, 2469, 10.1093/hmg/11.20.2469 May, 2007, Hemoglobin variants and disease manifestations in severe falciparum malaria, JAMA, 297, 2220, 10.1001/jama.297.20.2220 Weatherall, 2008, Genetic variation and susceptibility to infection: the red cell and malaria, Br J Haematol, 141, 276, 10.1111/j.1365-2141.2008.07085.x Haldane, 1949, The rate of mutation of human genes, Hereditas, 34, 267 Allison, 1954, Protection afforded by sickle-cell trait against subtertian malareal infection, BMJ, 1, 290, 10.1136/bmj.1.4857.290 Friedman, 1978, Erythrocytic mechanism of sickle cell resistance to malaria, Proc Natl Acad Sci USA, 75, 1994, 10.1073/pnas.75.4.1994 Williams, 2011, Sickle cell disease and malaria morbidity: a tale with two tails, Trends Parasitol, 27, 315, 10.1016/j.pt.2011.02.004 Gong, 2012, Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait, Blood, 119, 3808, 10.1182/blood-2011-08-371062 Bunn, 2013, The triumph of good over evil: protection by the sickle gene against malaria, Blood, 121, 20, 10.1182/blood-2012-08-449397 Modiano, 2001, Haemoglobin C protects against clinical Plasmodium falciparum malaria, Nature, 414, 305, 10.1038/35104556 Mockenhaupt, 2004, Hemoglobin C and resistance to severe malaria in Ghanaian children, J Infect Dis, 190, 1006, 10.1086/422847 Nagel, 1981, Impairment of the growth of Plasmodium falciparum in HbEE erythrocytes, J Clin Invest, 68, 303, 10.1172/JCI110248 Vernes, 1986, Decreased growth of Plasmodium falciparum in red cells containing haemoglobin E, a role for oxidative stress, and a sero-epidemiological correlation, Trans R Soc Trop Med Hyg, 80, 642, 10.1016/0035-9203(86)90163-X Ohashi, 2004, Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection, Am J Hum Genet, 74, 1198, 10.1086/421330 Allen, 1997, alpha+-Thalassemia protects children against disease caused by other infections as well as malaria, Proc Natl Acad Sci USA, 94, 14736, 10.1073/pnas.94.26.14736 Mockenhaupt, 2004, Alpha(+)-thalassemia protects African children from severe malaria, Blood, 104, 2003, 10.1182/blood-2003-11-4090 Williams, 2005, Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya, Blood, 106, 368, 10.1182/blood-2005-01-0313 Willcox, 1983, Falciparum malaria and beta-thalassaemia trait in northern Liberia, Ann Trop Med Parasitol, 77, 335, 10.1080/00034983.1983.11811722 Roth, 1988, Malaria in beta-thalassemic mice and the effects of the transgenic human beta-globin gene and splenectomy, J Lab Clin Med, 111, 35 Pattanapanyasat, 1999, Impairment of Plasmodium falciparum growth in thalassemic red blood cells: further evidence by using biotin labeling and flow cytometry, Blood, 93, 3116, 10.1182/blood.V93.9.3116 Ayi, 2004, Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait, Blood, 104, 3364, 10.1182/blood-2003-11-3820 Cappadoro, 1998, Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency, Blood, 92, 2527, 10.1182/blood.V92.7.2527 Luzzatto, 2015, G6PD deficiency: a polymorphism balanced by heterozygote advantage against malaria, Lancet Haematol, 2, e400, 10.1016/S2352-3026(15)00191-X Uyoga, 2015, Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study, Lancet Haematol, 2, e437, 10.1016/S2352-3026(15)00152-0 Grosse, 2011, Sickle cell disease in Africa: a neglected cause of early childhood mortality, Am J Prev Med, 41, S398, 10.1016/j.amepre.2011.09.013 Cappellini, 2008, Glucose-6-phosphate dehydrogenase deficiency, Lancet, 371, 64, 10.1016/S0140-6736(08)60073-2 Williams, 2012, World distribution, population genetics, and health burden of the hemoglobinopathies, Cold Spring Harb Perspect Med, 2, a011692, 10.1101/cshperspect.a011692 Weatherall, 2010, The inherited diseases of hemoglobin are an emerging global health burden, Blood, 115, 4331, 10.1182/blood-2010-01-251348 Piel, 2010, Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis, Nat Commun, 1, 104, 10.1038/ncomms1104 Piel, 2013, The distribution of haemoglobin C and its prevalence in newborns in Africa, Sci Rep, 3, 1671, 10.1038/srep01671 Howes, 2013, Spatial distribution of G6PD deficiency variants across malaria-endemic regions, Malar J, 12, 418, 10.1186/1475-2875-12-418 Brabin, 2001, An analysis of anemia and child mortality, J Nutr, 131, 636S, 10.1093/jn/131.2.636S Kassebaum, 2014, A systematic analysis of global anemia burden from 1990 to 2010, Blood, 123, 615, 10.1182/blood-2013-06-508325 Al-Shehri, 2016, An extensive burden of giardiasis associated with intestinal schistosomiasis and anaemia in school children on the shoreline of Lake Albert, Uganda, Trans R Soc Trop Med Hyg, 110, 597, 10.1093/trstmh/trw072 Moraleda, 2017, Anaemia in hospitalised preschool children from a rural area in Mozambique: a case control study in search for aetiological agents, BMC Pediatr, 17, 63, 10.1186/s12887-017-0816-x Calis, 2016, Severe anemia in Malawian children, Malawi Med J, 28, 99 Jonker, 2012, Real-time PCR demonstrates Ancylostoma duodenale is a key factor in the etiology of severe anemia and iron deficiency in Malawian pre-school children, PLoS Negl Trop Dis, 6, e1555, 10.1371/journal.pntd.0001555 Hotez, 2008, Tropical anemia: one of Africa’s great killers and a rationale for linking malaria and neglected tropical disease control to achieve a common goal, PLoS Negl Trop Dis, 2, e270, 10.1371/journal.pntd.0000270 Stoltzfus, 2003, Iron deficiency: global prevalence and consequences, Food Nutr Bull, 24, S99, 10.1177/15648265030244S206 Schellenberg, 2003, The silent burden of anaemia in Tanzanian children: a community-based study, Bull World Health Organ, 81, 581 Newton, 1997, Severe anaemia in children living in a malaria endemic area of Kenya, Trop Med Int Health, 2, 165, 10.1046/j.1365-3156.1997.d01-238.x Suchdev, 2014, The burden and consequences of inherited blood disorders among young children in western Kenya, Matern Child Nutr, 10, 135, 10.1111/j.1740-8709.2012.00454.x Calis, 2008, Severe anemia in Malawian children, N Engl J Med, 358, 888, 10.1056/NEJMoa072727 Phiri, 2008, Long term outcome of severe anaemia in Malawian children, PLoS One, 3, e2903, 10.1371/journal.pone.0002903 National Statistical Office, Community Health Services Unit of the Ministry of Health, Centers for Disease Control and Prevention. Malawi Micronutrient Survey Key Indicators Report 2015-16. Available at: https://dhsprogram.com/pubs/pdf/FR319/FR319m.pdf. Accessed 1 October 2018. Erhardt, 2004, Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique, J Nutr, 134, 3127, 10.1093/jn/134.11.3127 Grimholt, 2014, Rapid and reliable detection of α-globin copy number variations by quantitative real-time PCR, BMC Hematol, 14, 4, 10.1186/2052-1839-14-4 Heimlich, 2016, Establishing sickle cell diagnostics and characterizing a paediatric sickle cell disease cohort in Malawi, Br J Haematol, 174, 325, 10.1111/bjh.13769 Namaste, 2017, Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project, Am J Clin Nutr, 106, 359S, 10.3945/ajcn.116.141762 Diggle Giorgi, 2017, Prevmap: an R package for prevalence mapping, J Statistical Software, 78, 1, 10.18637/jss.v078.i08 UNICEF. 2013 statistics, Malawi. Available at: https://www.unicef.org/infobycountry/malawi_statistics.html. Accessed 1 October 2018. Kanyuka, 2016, Malawi and Millennium Development Goal 4: a countdown to 2015 country case study, Lancet Glob Health, 4, e201, 10.1016/S2214-109X(15)00294-6 Luzzatto, 2014, G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications, Br J Haematol, 164, 469, 10.1111/bjh.12665 Beutler, 2007, Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development, Am J Trop Med Hyg, 77, 779, 10.4269/ajtmh.2007.77.779 Baird, 2015, Point-of-care G6PD diagnostics for Plasmodium vivax malaria is a clinical and public health urgency, BMC Med, 13, 296, 10.1186/s12916-015-0531-0 Badejoko, 2014, Early neonatal bilirubin, hematocrit, and glucose-6-phosphate dehydrogenase status, Pediatrics, 134, e1082, 10.1542/peds.2014-0654 World Health Organization. Point-of-care G6PD testing to support safe use of primaquine for the treatment of vivax malaria. WHO: Malaria Policy Advisory Committee Meeting; March 2015, Geneva, Switzerland. Available at: www.who.int/malaria/mpac/mpac-march2015-erg-g6pd.pdf. Accessed 1 October 2018. Kaplan, 2009, The need for neonatal glucose-6-phosphate dehydrogenase screening: a global perspective, J Perinatol, 29, S46, 10.1038/jp.2008.216 Satyagraha, 2016, Assessment of point-of-care diagnostics for G6PD deficiency in malaria endemic rural Eastern Indonesia, PLoS Negl Trop Dis, 10, e0004457, 10.1371/journal.pntd.0004457 Bhutani, 2015, Point-of-care quantitative measure of glucose-6-phosphate dehydrogenase enzyme deficiency, Pediatrics, 136, e1268, 10.1542/peds.2015-2122 Williams, 2005, Negative epistasis between the malaria-protective effects of α+-thalassemia and the sickle cell trait, Nat Genet, 37, 1253, 10.1038/ng1660 Ndeezi, 2016, Burden of sickle cell trait and disease in the Uganda Sickle Surveillance Study (US3): a cross-sectional study, Lancet Glob Health, 4, e195, 10.1016/S2214-109X(15)00288-0