Prevalence of high-risk coronary plaques in patients with and without metabolic syndrome and the relationship with prognosis
Tóm tắt
Metabolic syndrome (MS) is a disorder, characterized by clusters of cardiovascular risk factors such as central obesity, insulin resistance, dyslipidemia and hypertension. Patients with MS may have a higher plaque burden that increases their risk of major adverse cardiovascular events (MACEs). This study aimed to analyze the prevalence of high-risk coronary plaques in patients with and without MS by coronary computed tomography angiography (CCTA) and to investigate the relationship between MS, high-risk coronary plaques, and their prognosis. This was a retrospective cohort study of 1136 patients who underwent CCTA due to chest pain without obstructive heart disease (≥50% coronary stenosis) between January 2014 and December 2015 in our hospital. The relationships between high risk coronary plaques, MS, and other clinical factors were assessed. Multicollinearity analysis was performed to identify the collinearity between the variables. The proportional hazard assumption was checked and using Schoenfeld residual test. Cox proportional hazards model and Kaplan-Meier survival analysis assessed the relationship between MS, high-risk coronary plaques and MACEs. High-risk plaques were more frequent in the MS group than non-MS group (P = 0.004). MS (HR = 2.128, 95%CI: 1.524–2.970, P < 0.001), presence of high-risk plaques (HR = 11.059, 95%CI: 7.749–57.232, P < 0.001) and high sensitivity C-reactive protein (hsCRP) (HR = 1.629, 95%CI: 1.128–2.352, P = 0.009) were related with an increased risk of MACEs in patients with risk factors for coronary heart disease. In patients with high-risk plaques, MS (HR = 2.265, 95%CI: 1.629–3.150, P < 0.001) and hsCRP (HR = 1.267, 95%CI: 1.191–1.348, P = 0.004) were related with an increased risk of MACEs. Kaplan-Meier analysis showed differences in MACEs between the MS and non-MS groups in the whole population and those with high-risk plaques (both P < 0.0001). High-risk plaques were more common in patients with MS. MS and the presence of high-risk plaques were independent risk factors for MACEs.
Tài liệu tham khảo
O'Neill S, O'Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.
Lu J, Wang L, Li M, Xu Y, Jiang Y, Wang W, et al. Metabolic syndrome among adults in China: the 2010 China noncommunicable disease surveillance. J Clin Endocrinol Metab. 2017;102:507–15.
Hess PL, Al-Khalidi HR, Friedman DJ, Mulder H, Kucharska-Newton A, Rosamond WR, et al. The metabolic syndrome and risk of sudden cardiac death: the atherosclerosis risk in communities study. J Am Heart Assoc. 2017;6(8). https://doi.org/10.1161/JAHA.117.006103.
Ryu J, Yong HS, Huh S, Kang EY, Woo OH. Relation of coronary atherosclerosis and metabolic syndrome in asymptomatic subjects: evaluation with coronary CT angiography. Int J Cardiovasc Imag. 2013;29(Suppl 2):101–7.
Park YM, Han SH, Seo JG, Lee S, Oh PC, Koh KK, et al. The role of insulin resistance and metabolic risk factors on culprit coronary plaque. Int J Cardiol. 2015;190:56–62.
Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17:120–9.
Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390–402.
Tomizawa N, Yamamoto K, Hayakawa Y, Inoh S, Nojo T, Nakamura S. A clinical model to identify patients with high-risk plaque by coronary computed tomography angiography. Int J Cardiol. 2017;228:260–4.
Szilveszter B, Celeng C, Maurovich-Horvat P. Plaque assessment by coronary CT. Int J Cardiovasc Imag. 2016;32:161–72.
Ahmadi A, Leipsic J, Feuchtner G, Gransar H, Kalra D, Heo R, et al. Is metabolic syndrome predictive of prevalence, extent, and risk of coronary artery disease beyond its components? Results from the multinational coronary CT angiography evaluation for clinical outcome: an international multicenter registry (CONFIRM). PLoS One. 2015;10:e0118998.
Wilson PW, Kannel WB, Silbershatz H, D'Agostino RB. Clustering of metabolic factors and coronary heart disease. Arch Intern Med. 1999;159:1104–9.
Synetos A, Papanikolaou A, Toutouzas K, Georgiopoulos G, Karanasos A, Drakopoulou M, et al. Metabolic syndrome predicts plaque rupture in patients with acute myocardial infarction. An optical coherence study. Int J Cardiol. 2016;209:139–41.
Chirinos DA, Medina-Lezama J, Arguelles W, Goldberg R, Schneiderman N, Khan Z, et al. Metabolic syndrome as an underlying disease entity and its relationship to subclinical atherosclerosis in Andean Hispanics. Metab Syndr Relat Disord. 2014;12:49–55.
van Rooy MJ, Pretorius E. Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke. Thromb Res. 2015;135:434–42.
Szentpetery A, Healy GM, Brady D, Haroon M, Gallagher P, Redmond CE, et al. Higher coronary plaque burden in psoriatic arthritis is independent of metabolic syndrome and associated with underlying disease severity. Arthritis Rheumatol. 2018;70:396–407.
Yonetsu T, Kato K, Uemura S, Kim BK, Jang Y, Kang SJ, et al. Features of coronary plaque in patients with metabolic syndrome and diabetes mellitus assessed by 3-vessel optical coherence tomography. Circ Cardiovasc Imag. 2013;6:665–73.
Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement: executive summary. Crit Pathw Cardiol. 2005;4:198–203.
American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical C, Training, Society of Atherosclerosis I, Prevention, Society for Cardiovascular A, Interventions, et al. ACCF/AHA 2007 clinical competence statement on vascular imaging with computed tomography and magnetic resonance: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training: developed in collaboration with the Society of Atherosclerosis Imaging and Prevention, the Society for Cardiovascular Angiography and Interventions, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society for Vascular Medicine and Biology. Circulation. 2007;116:1318–35.
Conte E, Annoni A, Pontone G, Mushtaq S, Guglielmo M, Baggiano A, et al. Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study. Eur Heart J Cardiovasc Imaging. 2017;18:1170–8.
M JK, S LJ, D RB, O PM, W JW, R DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality, vol. 50; 2007. p. 1161–70.
H M, A S, M A-M, B D, B M, C F, et al. Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol. 2013;62:468–76.
Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63:2960–84.
Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J, et al. Total coronary artery plaque burden measured by cardiac computed tomography is associated with metabolic syndrome. J Atheroscler Thromb. 2011;18:939–45.
Cury MV, Presti C, Bonadiman SS, Casella IB, Benabou JE, da Silva ES, et al. Carotid plaque morphology in asymptomatic patients with and without metabolic syndrome. Ann Vasc Surg. 2017;39:173–81.
Bersch-Ferreira AC, Sampaio GR, Gehringer MO, Torres E, Ross-Fernandes MB, da Silva JT, et al. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study. Nutr J. 2018;17:26.
Koyama K, Yoneyama K, Mitarai T, Ishibashi Y, Takahashi E, Kongoji K, et al. Association between inflammatory biomarkers and thin-cap fibroatheroma detected by optical coherence tomography in patients with coronary heart disease. Arch Med Sci. 2015;11:505–12.
Kroner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107:1725–9.
Ferencik M, Schlett CL, Ghoshhajra BB, Kriegel MF, Joshi SB, Maurovich-Horvat P, et al. A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol. 2012;110:183–9.
Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Otsuka F, Stolzmann P, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243–52.
Kim LK, Yoon JW, Lee DH, Kim KM, Choi SH, Park KS, et al. Impact of metabolic syndrome on the progression of coronary calcium and of coronary artery disease assessed by repeated cardiac computed tomography scans. Cardiovasc Diabetol. 2016;15:92.
Lambrinoudaki I, Kazani A, Armeni E, Rizos D, Augoulea A, Kaparos G, et al. The metabolic syndrome is associated with carotid atherosclerosis and arterial stiffness in asymptomatic, nondiabetic postmenopausal women. Gynecol Endocrinol. 2018;34:78–82.