Preterm neonates distinguish rhythm violation through a hierarchy of cortical processing
Tài liệu tham khảo
Adam-Darque, 2020, Neural correlates of voice perception in newborns and the influence of preterm birth, Cereb. Cortex, 30, 5717, 10.1093/cercor/bhaa144
Adibpour, 2020, Anatomo-functional correlates of auditory development in infancy, Dev. Cogn. Neurosci., 42, 10.1016/j.dcn.2019.100752
Auksztulewicz, 2018, Not all predictions are equal:“what” and “when” predictions modulate activity in auditory cortex through different mechanisms, J. Neurosci., 38, 8680, 10.1523/JNEUROSCI.0369-18.2018
Azizollahi, 2020, Effect of structural complexities in head modeling on the accuracy of EEG source localization in neonates, J. Neural Eng., 17, 10.1088/1741-2552/abb994
Basirat, 2014, A hierarchy of cortical responses to sequence violations in three-month-old infants, Cognition, 132, 137, 10.1016/j.cognition.2014.03.013
Ben-Ari, 2002, Excitatory actions of gaba during development: the nature of the nurture, Nat. Rev. Neurosci., 3, 728, 10.1038/nrn920
Boly, 2011, Preserved feedforward but impaired top-down processes in the vegetative state, Science, 332, 858, 10.1126/science.1202043
Bouwer, 2015, Temporal attending and prediction influence the perception of metrical rhythm: evidence from reaction times and ERPs, Front. Psychol., 6, 1094, 10.3389/fpsyg.2015.01094
Bouwer, 2014, Beat processing is pre-attentive for metrically simple rhythms with clear accents: an ERP study, PloS One, 9, 10.1371/journal.pone.0097467
Brauer, 2013, Dorsal and ventral pathways in language development, Brain Lang., 127, 289, 10.1016/j.bandl.2013.03.001
Chennu, 2013, Expectation and attention in hierarchical auditory prediction, J. Neurosci., 33, 11194, 10.1523/JNEUROSCI.0114-13.2013
Chennu, 2016, Silent expectations: dynamic causal modeling of cortical prediction and attention to sounds that weren't, J. Neurosci., 36, 8305, 10.1523/JNEUROSCI.1125-16.2016
Cheour-Luhtanen, 1996, The ontogenetically earliest discriminative response of the human brain, Psychophysiology, 33, 478, 10.1111/j.1469-8986.1996.tb01074.x
Cirelli, 2016, Measuring neural entrainment to beat and meter in infants: effects of music background, Front. Neurosci., 10, 229, 10.3389/fnins.2016.00229
Colonnese, 2018, Thalamocortical function in developing sensory circuits, Curr. Opin. Neurobiol., 52, 72, 10.1016/j.conb.2018.04.019
Cooray, 2016, The maturation of mismatch negativity networks in normal adolescence, Clin. Neurophysiol., 127, 520, 10.1016/j.clinph.2015.06.026
David, 2006, Dynamic causal modeling of evoked responses in EEG and MEG, NeuroImage, 30, 1255, 10.1016/j.neuroimage.2005.10.045
Dehaene-Lambertz, 2006, Functional organization of perisylvian activation during presentation of sentences in preverbal infants, Proc. Natl. Acad. Sci., 103, 14240, 10.1073/pnas.0606302103
Delorme, 2004, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, 134, 9, 10.1016/j.jneumeth.2003.10.009
Doeller, 2003, Prefrontal cortex involvement in preattentive auditory deviance detection:: neuroimaging and electrophysiological evidence, Neuroimage, 20, 1270, 10.1016/S1053-8119(03)00389-6
Draganova, 2005, Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study, Neuroimage, 28, 354, 10.1016/j.neuroimage.2005.06.011
Dubois, 2008, Primary cortical folding in the human newborn: an early marker of later functional development, Brain, 131, 2028, 10.1093/brain/awn137
Dubois J., Kostovic I., Judas M., 2015. Development of structural and functional connectivity. Brain Mapping: An Encyclopedic Reference, 2, pp. 423–437.
Edalati, 2020, Great expectations in music: violation of rhythmic expectancies elicits late frontal gamma activity nested in theta oscillations, arXiv Prepr. arXiv, 2011, 12676
Friston, 2002, Beyond phrenology: what can neuroimaging tell us about distributed circuitry?, Annu. Rev. Neurosci., 25, 221, 10.1146/annurev.neuro.25.112701.142846
Friston, 2005, A theory of cortical responses, Philos. Trans. R. Soc. B: Biol. Sci., 360, 815, 10.1098/rstb.2005.1622
Garrido, 2008, The functional anatomy of the MMN: a DCM study of the roving paradigm, Neuroimage, 42, 936, 10.1016/j.neuroimage.2008.05.018
Garrido, 2007, Dynamic causal modelling of evoked potentials: a reproducibility study, Neuroimage, 36, 571, 10.1016/j.neuroimage.2007.03.014
Garrido, 2007, Evoked brain responses are generated by feedback loops, Proc. Natl. Acad. Sci., 104, 20961, 10.1073/pnas.0706274105
Garrido, 2009, Dynamic causal modeling of the response to frequency deviants, J. Neurophysiol., 101, 2620, 10.1152/jn.90291.2008
Garrido, 2009, The mismatch negativity: a review of underlying mechanisms, Clin. Neurophysiol., 120, 453, 10.1016/j.clinph.2008.11.029
Geiser, 2009, Early electrophysiological correlates of meter and rhythm processing in music perception, cortex, 45, 93, 10.1016/j.cortex.2007.09.010
Gervain, 2018, The role of prenatal experience in language development, Curr. Opin. Behav. Sci., 21, 62, 10.1016/j.cobeha.2018.02.004
Ghadimi, 2015, Skull segmentation and reconstruction from newborn CT images using coupled level sets, IEEE J. Biomed. Health Inform., 20, 563, 10.1109/JBHI.2015.2391991
Grahn, 2012, Neural mechanisms of rhythm perception: current findings and future perspectives, Top. Cogn. Sci., 4, 585, 10.1111/j.1756-8765.2012.01213.x
Háden, 2015, Detecting the temporal structure of sound sequences in newborn infants, Int. J. Psychophysiol., 96, 23, 10.1016/j.ijpsycho.2015.02.024
Hannon, 2005, Tuning in to musical rhythms: Infants learn more readily than adults, Proc. Natl. Acad. Sci., 102, 12639, 10.1073/pnas.0504254102
He, 2007, Mismatch responses to pitch changes in early infancy, J. Cogn. Neurosci., 19, 878, 10.1162/jocn.2007.19.5.878
Heilbron, 2018, Great expectations: is there evidence for predictive coding in auditory cortex?, Neuroscience, 389, 54, 10.1016/j.neuroscience.2017.07.061
Honing, 2009, Is beat induction innate or learned? Probing emergent meter perception in adults and newborns using event‐related brain potentials, Ann. N. Y. Acad. Sci., 1169, 93, 10.1111/j.1749-6632.2009.04761.x
Hughes, 2013, Reorganisation of brain networks in frontotemporal dementia and progressive supranuclear palsy, NeuroImage: Clin., 2, 459, 10.1016/j.nicl.2013.03.009
Kass, 1995, Bayes factors, J. Am. Stat. Assoc., 90, 773, 10.1080/01621459.1995.10476572
Kennedy, 2007, Self-organization and pattern formation in primate cortical networks, Novartis Found. Symp., 178
Kiebel, 2006, Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization, NeuroImage, 30, 1273, 10.1016/j.neuroimage.2005.12.055
Kiebel, 2008, Dynamic causal modelling for EEG and MEG, Cogn. Neurodyn, 2, 121, 10.1007/s11571-008-9038-0
Kleiner M., Brainard D., Pelli D., 2007. What's new in Psychtoolbox-3? Perception, 36 (2007) ECVP Abstract Supplement.
Koelsch, 2019, Predictive processes and the peculiar case of music, Trends Cogn. Sci., 23, 63, 10.1016/j.tics.2018.10.006
Kostović, 2010, The development of the subplate and thalamocortical connections in the human foetal brain, Acta Paediatr., 99, 1119, 10.1111/j.1651-2227.2010.01811.x
Kostović, 2019, Neural histology and neurogenesis of the human fetal and infant brain, NeuroImage, 188, 743, 10.1016/j.neuroimage.2018.12.043
Lappe, 2013, Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection, Front. Hum. Neurosci., 7, 260, 10.3389/fnhum.2013.00260
Lappe, 2016, Differential processing of melodic, rhythmic and simple tone deviations in musicians-an MEG study, NeuroImage, 124, 898, 10.1016/j.neuroimage.2015.09.059
Larsen, 2018, Altered auditory processing and effective connectivity in 22q11. 2 deletion syndrome, Schizophr. Res., 197, 328, 10.1016/j.schres.2018.01.026
Lelo-de-Larrea-Mancera, 2017, Musical rhythm and pitch: a differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex, Neuropsychologia, 100, 44, 10.1016/j.neuropsychologia.2017.04.001
Leroy, 2011, Early maturation of the linguistic dorsal pathway in human infants, J. Neurosci., 31, 1500, 10.1523/JNEUROSCI.4141-10.2011
Lumaca, 2021, Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale, Hum. Brain Mapp., 42, 941, 10.1002/hbm.25269
Mahmoudzadeh, 2013, Syllabic discrimination in premature human infants prior to complete formation of cortical layers, Proc. Natl. Acad. Sci., 110, 4846, 10.1073/pnas.1212220110
Mahmoudzadeh, 2017, Functional maps at the onset of auditory inputs in very early preterm human neonates, Cereb. Cortex, 27, 2500
Marin-Padilla, 1970, Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers, Brain Res., 23, 167, 10.1016/0006-8993(70)90037-5
Maris, 2007, Nonparametric statistical testing of EEG-and MEG-data, J. Neurosci. Methods, 164, 177, 10.1016/j.jneumeth.2007.03.024
Molholm, 2005, The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex, 15, 545, 10.1093/cercor/bhh155
Morillon, 2017, Motor origin of temporal predictions in auditory attention, Proc. Natl. Acad. Sci., 114, E8913, 10.1073/pnas.1705373114
Moser, 2020, Magnetoencephalographic signatures of hierarchical rule learning in newborns, Dev. Cogn. Neurosci., 46, 10.1016/j.dcn.2020.100871
Mrzljak, 1988, Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study, J. Comp. Neurol., 271, 355, 10.1002/cne.902710306
Muenssinger, 2013, Auditory habituation in the fetus and neonate: an fMEG study, Dev. Sci., 16, 287, 10.1111/desc.12025
Murata, 2019, Thalamic inhibitory circuits and network activity development, Brain Res., 1706, 13, 10.1016/j.brainres.2018.10.024
Nave-Blodgett, 2021, Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training, J. Exp. Psychol.: Gen., 150, 314, 10.1037/xge0000903
Oostenveld, 2011, FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci., 2011, 41, 10.1155/2011/156869
Opitz, 2002, Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results, Neuroimage, 15, 167, 10.1006/nimg.2001.0970
Park, 2013, Structural and functional brain networks: from connections to cognition, Science, 342, 6158, 10.1126/science.1238411
Penny, 2004, Comparing dynamic causal models, Neuroimage, 22, 1157, 10.1016/j.neuroimage.2004.03.026
Perani, 2010, Functional specializations for music processing in the human newborn brain, Proc. Natl. Acad. Sci., 107, 4758, 10.1073/pnas.0909074107
Perani, 2011, Neural language networks at birth, Proc. Natl. Acad. Sci., 108, 16056, 10.1073/pnas.1102991108
Phillips, 2015, Hierarchical organization of frontotemporal networks for the prediction of stimuli across multiple dimensions, J. Neurosci., 35, 9255, 10.1523/JNEUROSCI.5095-14.2015
Rinne, 2005, Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study, Neuroimage, 26, 66, 10.1016/j.neuroimage.2005.01.017
Schmidt, 2013, Modeling ketamine effects on synaptic plasticity during the mismatch negativity, Cereb. Cortex, 23, 2394, 10.1093/cercor/bhs238
Shultz, 2014, Neural specialization for speech in the first months of life, Dev. Sci., 17, 766, 10.1111/desc.12151
Soley, 2010, Infants prefer the musical meter of their own culture: a cross-cultural comparison, Dev. Psychol., 46, 286, 10.1037/a0017555
Stephan, 2010, Ten simple rules for dynamic causal modeling, Neuroimage, 49, 3099, 10.1016/j.neuroimage.2009.11.015
Takahashi, 2012, Emerging cerebral connectivity in the human fetal brain: an MR tractography study, Cereb. cortex, 22, 455, 10.1093/cercor/bhr126
Thaut, 2014, Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern, Brain Sci., 4, 428, 10.3390/brainsci4020428
Trainor, 2010, Music acquisition and effects of musical experience, 89
Ullal, 2013, Linking prenatal experience to the emerging musical mind, Front. Syst. Neurosci., 7, 48
Vuust, 2016, Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm, Clin. Neurophysiol., 127, 2065, 10.1016/j.clinph.2015.11.009
Vuust, 2018, Now you hear it: A predictive coding model for understanding rhythmic incongruity, Ann. N. Y. Acad. Sci., 1423, 19, 10.1111/nyas.13622
Wacongne, 2012, A neuronal model of predictive coding accounting for the mismatch negativity, J. Neurosci., 32, 3665, 10.1523/JNEUROSCI.5003-11.2012
Winkler, 2009, Newborn infants detect the beat in music, Proc. Natl. Acad. Sci., 106, 2468, 10.1073/pnas.0809035106
Zhao, 2016, Musical intervention enhances infants’ neural processing of temporal structure in music and speech, Proc. Natl. Acad. Sci., 113, 5212, 10.1073/pnas.1603984113
Zhao, 2017, Neural processing of musical meter in musicians and non-musicians, Neuropsychologia, 106, 289, 10.1016/j.neuropsychologia.2017.10.007