Preterm neonates distinguish rhythm violation through a hierarchy of cortical processing

Developmental Cognitive Neuroscience - Tập 58 - Trang 101168 - 2022
Mohammadreza Edalati1,2, Mahdi Mahmoudzadeh1, Ghida Ghostine1, Guy Kongolo1, Javad Safaie2, Fabrice Wallois1,3, Sahar Moghimi1
1Inserm UMR1105, Groupe de Recherches sur l′Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80054 Amiens Cedex, France
2Electrical Engineering Department, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
3Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France

Tài liệu tham khảo

Adam-Darque, 2020, Neural correlates of voice perception in newborns and the influence of preterm birth, Cereb. Cortex, 30, 5717, 10.1093/cercor/bhaa144 Adibpour, 2020, Anatomo-functional correlates of auditory development in infancy, Dev. Cogn. Neurosci., 42, 10.1016/j.dcn.2019.100752 Auksztulewicz, 2018, Not all predictions are equal:“what” and “when” predictions modulate activity in auditory cortex through different mechanisms, J. Neurosci., 38, 8680, 10.1523/JNEUROSCI.0369-18.2018 Azizollahi, 2020, Effect of structural complexities in head modeling on the accuracy of EEG source localization in neonates, J. Neural Eng., 17, 10.1088/1741-2552/abb994 Basirat, 2014, A hierarchy of cortical responses to sequence violations in three-month-old infants, Cognition, 132, 137, 10.1016/j.cognition.2014.03.013 Ben-Ari, 2002, Excitatory actions of gaba during development: the nature of the nurture, Nat. Rev. Neurosci., 3, 728, 10.1038/nrn920 Boly, 2011, Preserved feedforward but impaired top-down processes in the vegetative state, Science, 332, 858, 10.1126/science.1202043 Bouwer, 2015, Temporal attending and prediction influence the perception of metrical rhythm: evidence from reaction times and ERPs, Front. Psychol., 6, 1094, 10.3389/fpsyg.2015.01094 Bouwer, 2014, Beat processing is pre-attentive for metrically simple rhythms with clear accents: an ERP study, PloS One, 9, 10.1371/journal.pone.0097467 Brauer, 2013, Dorsal and ventral pathways in language development, Brain Lang., 127, 289, 10.1016/j.bandl.2013.03.001 Chennu, 2013, Expectation and attention in hierarchical auditory prediction, J. Neurosci., 33, 11194, 10.1523/JNEUROSCI.0114-13.2013 Chennu, 2016, Silent expectations: dynamic causal modeling of cortical prediction and attention to sounds that weren't, J. Neurosci., 36, 8305, 10.1523/JNEUROSCI.1125-16.2016 Cheour-Luhtanen, 1996, The ontogenetically earliest discriminative response of the human brain, Psychophysiology, 33, 478, 10.1111/j.1469-8986.1996.tb01074.x Cirelli, 2016, Measuring neural entrainment to beat and meter in infants: effects of music background, Front. Neurosci., 10, 229, 10.3389/fnins.2016.00229 Colonnese, 2018, Thalamocortical function in developing sensory circuits, Curr. Opin. Neurobiol., 52, 72, 10.1016/j.conb.2018.04.019 Cooray, 2016, The maturation of mismatch negativity networks in normal adolescence, Clin. Neurophysiol., 127, 520, 10.1016/j.clinph.2015.06.026 David, 2006, Dynamic causal modeling of evoked responses in EEG and MEG, NeuroImage, 30, 1255, 10.1016/j.neuroimage.2005.10.045 Dehaene-Lambertz, 2006, Functional organization of perisylvian activation during presentation of sentences in preverbal infants, Proc. Natl. Acad. Sci., 103, 14240, 10.1073/pnas.0606302103 Delorme, 2004, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, 134, 9, 10.1016/j.jneumeth.2003.10.009 Doeller, 2003, Prefrontal cortex involvement in preattentive auditory deviance detection:: neuroimaging and electrophysiological evidence, Neuroimage, 20, 1270, 10.1016/S1053-8119(03)00389-6 Draganova, 2005, Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study, Neuroimage, 28, 354, 10.1016/j.neuroimage.2005.06.011 Dubois, 2008, Primary cortical folding in the human newborn: an early marker of later functional development, Brain, 131, 2028, 10.1093/brain/awn137 Dubois J., Kostovic I., Judas M., 2015. Development of structural and functional connectivity. Brain Mapping: An Encyclopedic Reference, 2, pp. 423–437. Edalati, 2020, Great expectations in music: violation of rhythmic expectancies elicits late frontal gamma activity nested in theta oscillations, arXiv Prepr. arXiv, 2011, 12676 Friston, 2002, Beyond phrenology: what can neuroimaging tell us about distributed circuitry?, Annu. Rev. Neurosci., 25, 221, 10.1146/annurev.neuro.25.112701.142846 Friston, 2005, A theory of cortical responses, Philos. Trans. R. Soc. B: Biol. Sci., 360, 815, 10.1098/rstb.2005.1622 Garrido, 2008, The functional anatomy of the MMN: a DCM study of the roving paradigm, Neuroimage, 42, 936, 10.1016/j.neuroimage.2008.05.018 Garrido, 2007, Dynamic causal modelling of evoked potentials: a reproducibility study, Neuroimage, 36, 571, 10.1016/j.neuroimage.2007.03.014 Garrido, 2007, Evoked brain responses are generated by feedback loops, Proc. Natl. Acad. Sci., 104, 20961, 10.1073/pnas.0706274105 Garrido, 2009, Dynamic causal modeling of the response to frequency deviants, J. Neurophysiol., 101, 2620, 10.1152/jn.90291.2008 Garrido, 2009, The mismatch negativity: a review of underlying mechanisms, Clin. Neurophysiol., 120, 453, 10.1016/j.clinph.2008.11.029 Geiser, 2009, Early electrophysiological correlates of meter and rhythm processing in music perception, cortex, 45, 93, 10.1016/j.cortex.2007.09.010 Gervain, 2018, The role of prenatal experience in language development, Curr. Opin. Behav. Sci., 21, 62, 10.1016/j.cobeha.2018.02.004 Ghadimi, 2015, Skull segmentation and reconstruction from newborn CT images using coupled level sets, IEEE J. Biomed. Health Inform., 20, 563, 10.1109/JBHI.2015.2391991 Grahn, 2012, Neural mechanisms of rhythm perception: current findings and future perspectives, Top. Cogn. Sci., 4, 585, 10.1111/j.1756-8765.2012.01213.x Háden, 2015, Detecting the temporal structure of sound sequences in newborn infants, Int. J. Psychophysiol., 96, 23, 10.1016/j.ijpsycho.2015.02.024 Hannon, 2005, Tuning in to musical rhythms: Infants learn more readily than adults, Proc. Natl. Acad. Sci., 102, 12639, 10.1073/pnas.0504254102 He, 2007, Mismatch responses to pitch changes in early infancy, J. Cogn. Neurosci., 19, 878, 10.1162/jocn.2007.19.5.878 Heilbron, 2018, Great expectations: is there evidence for predictive coding in auditory cortex?, Neuroscience, 389, 54, 10.1016/j.neuroscience.2017.07.061 Honing, 2009, Is beat induction innate or learned? Probing emergent meter perception in adults and newborns using event‐related brain potentials, Ann. N. Y. Acad. Sci., 1169, 93, 10.1111/j.1749-6632.2009.04761.x Hughes, 2013, Reorganisation of brain networks in frontotemporal dementia and progressive supranuclear palsy, NeuroImage: Clin., 2, 459, 10.1016/j.nicl.2013.03.009 Kass, 1995, Bayes factors, J. Am. Stat. Assoc., 90, 773, 10.1080/01621459.1995.10476572 Kennedy, 2007, Self-organization and pattern formation in primate cortical networks, Novartis Found. Symp., 178 Kiebel, 2006, Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization, NeuroImage, 30, 1273, 10.1016/j.neuroimage.2005.12.055 Kiebel, 2008, Dynamic causal modelling for EEG and MEG, Cogn. Neurodyn, 2, 121, 10.1007/s11571-008-9038-0 Kleiner M., Brainard D., Pelli D., 2007. What's new in Psychtoolbox-3? Perception, 36 (2007) ECVP Abstract Supplement. Koelsch, 2019, Predictive processes and the peculiar case of music, Trends Cogn. Sci., 23, 63, 10.1016/j.tics.2018.10.006 Kostović, 2010, The development of the subplate and thalamocortical connections in the human foetal brain, Acta Paediatr., 99, 1119, 10.1111/j.1651-2227.2010.01811.x Kostović, 2019, Neural histology and neurogenesis of the human fetal and infant brain, NeuroImage, 188, 743, 10.1016/j.neuroimage.2018.12.043 Lappe, 2013, Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection, Front. Hum. Neurosci., 7, 260, 10.3389/fnhum.2013.00260 Lappe, 2016, Differential processing of melodic, rhythmic and simple tone deviations in musicians-an MEG study, NeuroImage, 124, 898, 10.1016/j.neuroimage.2015.09.059 Larsen, 2018, Altered auditory processing and effective connectivity in 22q11. 2 deletion syndrome, Schizophr. Res., 197, 328, 10.1016/j.schres.2018.01.026 Lelo-de-Larrea-Mancera, 2017, Musical rhythm and pitch: a differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex, Neuropsychologia, 100, 44, 10.1016/j.neuropsychologia.2017.04.001 Leroy, 2011, Early maturation of the linguistic dorsal pathway in human infants, J. Neurosci., 31, 1500, 10.1523/JNEUROSCI.4141-10.2011 Lumaca, 2021, Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale, Hum. Brain Mapp., 42, 941, 10.1002/hbm.25269 Mahmoudzadeh, 2013, Syllabic discrimination in premature human infants prior to complete formation of cortical layers, Proc. Natl. Acad. Sci., 110, 4846, 10.1073/pnas.1212220110 Mahmoudzadeh, 2017, Functional maps at the onset of auditory inputs in very early preterm human neonates, Cereb. Cortex, 27, 2500 Marin-Padilla, 1970, Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers, Brain Res., 23, 167, 10.1016/0006-8993(70)90037-5 Maris, 2007, Nonparametric statistical testing of EEG-and MEG-data, J. Neurosci. Methods, 164, 177, 10.1016/j.jneumeth.2007.03.024 Molholm, 2005, The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex, 15, 545, 10.1093/cercor/bhh155 Morillon, 2017, Motor origin of temporal predictions in auditory attention, Proc. Natl. Acad. Sci., 114, E8913, 10.1073/pnas.1705373114 Moser, 2020, Magnetoencephalographic signatures of hierarchical rule learning in newborns, Dev. Cogn. Neurosci., 46, 10.1016/j.dcn.2020.100871 Mrzljak, 1988, Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study, J. Comp. Neurol., 271, 355, 10.1002/cne.902710306 Muenssinger, 2013, Auditory habituation in the fetus and neonate: an fMEG study, Dev. Sci., 16, 287, 10.1111/desc.12025 Murata, 2019, Thalamic inhibitory circuits and network activity development, Brain Res., 1706, 13, 10.1016/j.brainres.2018.10.024 Nave-Blodgett, 2021, Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training, J. Exp. Psychol.: Gen., 150, 314, 10.1037/xge0000903 Oostenveld, 2011, FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci., 2011, 41, 10.1155/2011/156869 Opitz, 2002, Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results, Neuroimage, 15, 167, 10.1006/nimg.2001.0970 Park, 2013, Structural and functional brain networks: from connections to cognition, Science, 342, 6158, 10.1126/science.1238411 Penny, 2004, Comparing dynamic causal models, Neuroimage, 22, 1157, 10.1016/j.neuroimage.2004.03.026 Perani, 2010, Functional specializations for music processing in the human newborn brain, Proc. Natl. Acad. Sci., 107, 4758, 10.1073/pnas.0909074107 Perani, 2011, Neural language networks at birth, Proc. Natl. Acad. Sci., 108, 16056, 10.1073/pnas.1102991108 Phillips, 2015, Hierarchical organization of frontotemporal networks for the prediction of stimuli across multiple dimensions, J. Neurosci., 35, 9255, 10.1523/JNEUROSCI.5095-14.2015 Rinne, 2005, Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study, Neuroimage, 26, 66, 10.1016/j.neuroimage.2005.01.017 Schmidt, 2013, Modeling ketamine effects on synaptic plasticity during the mismatch negativity, Cereb. Cortex, 23, 2394, 10.1093/cercor/bhs238 Shultz, 2014, Neural specialization for speech in the first months of life, Dev. Sci., 17, 766, 10.1111/desc.12151 Soley, 2010, Infants prefer the musical meter of their own culture: a cross-cultural comparison, Dev. Psychol., 46, 286, 10.1037/a0017555 Stephan, 2010, Ten simple rules for dynamic causal modeling, Neuroimage, 49, 3099, 10.1016/j.neuroimage.2009.11.015 Takahashi, 2012, Emerging cerebral connectivity in the human fetal brain: an MR tractography study, Cereb. cortex, 22, 455, 10.1093/cercor/bhr126 Thaut, 2014, Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern, Brain Sci., 4, 428, 10.3390/brainsci4020428 Trainor, 2010, Music acquisition and effects of musical experience, 89 Ullal, 2013, Linking prenatal experience to the emerging musical mind, Front. Syst. Neurosci., 7, 48 Vuust, 2016, Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm, Clin. Neurophysiol., 127, 2065, 10.1016/j.clinph.2015.11.009 Vuust, 2018, Now you hear it: A predictive coding model for understanding rhythmic incongruity, Ann. N. Y. Acad. Sci., 1423, 19, 10.1111/nyas.13622 Wacongne, 2012, A neuronal model of predictive coding accounting for the mismatch negativity, J. Neurosci., 32, 3665, 10.1523/JNEUROSCI.5003-11.2012 Winkler, 2009, Newborn infants detect the beat in music, Proc. Natl. Acad. Sci., 106, 2468, 10.1073/pnas.0809035106 Zhao, 2016, Musical intervention enhances infants’ neural processing of temporal structure in music and speech, Proc. Natl. Acad. Sci., 113, 5212, 10.1073/pnas.1603984113 Zhao, 2017, Neural processing of musical meter in musicians and non-musicians, Neuropsychologia, 106, 289, 10.1016/j.neuropsychologia.2017.10.007