Duy trì điều tiết áp lực tưới máu thận bởi các kênh KCa có độ dẫn nhỏ và trung bình ở chuột tăng huyết áp có hoặc không có suy thận

Ludovic Waeckel1,2, Florence Bertin2, Nicolas Clavreul2, Thibaut Damery2, Ralf Köhler3,4, Jérôme Paysant2, Patricia Sansilvestri-Morel2, Serge Simonet2, Christine Vayssettes-Courchay2, Heike Wulff5, Tony J. Verbeuren2, Michel Félétou2
1Centre de Recherche des Cordeliers, INSERM UMRS 872, Paris, France
2Unité de Recherches et de Découvertes Cardiovasculaires, Institut de Recherches Servier, Suresnes, France
3Cardiovascular and Renal Research, IMM, University of Southern and Denmark, Odense, Denmark
4Aragon Institute of Health Sciences-I + CS and ARAID, Zaragoza, Spain
5Department of Pharmacology, University of California, Davis, USA

Tóm tắt

Mục tiêu của nghiên cứu này là đánh giá, ở thận chuột, các cơ chế tiềm ẩn điều khiển trương lực mạch phụ thuộc nội mô và liệu KCa có đóng góp vào việc điều tiết này hay không trong mô hình tăng huyết áp nghiêm trọng và suy thận. Chuột cái kiểu hoang dã (BL) và chuột hai chuyển gen biểu hiện gen angiotensinogen và renin của người (AR) đã nhận chế độ ăn kiểm soát hoặc chế độ ăn nhiều muối kết hợp với việc điều trị bằng chất ức chế nitric oxide (NO) synthase (BLSL và ARSL). Thay đổi về áp lực tưới máu thận (RPP) được đo trong các thận được tưới không bị ảnh hưởng. BLSL và AR có mức huyết áp hơi tăng mà không có bệnh thận trong khi ARSL phát triển thành tăng huyết áp nặng và suy thận. Trong cả bốn nhóm, methacholine đã kích thích phản ứng phụ thuộc nội mô hai pha, sự giảm tạm thời ở RPP tiếp theo bởi sự gia tăng RPP phụ thuộc cyclooxygenase. Trong sự hiện diện hoặc không có indomethacin, sự giãn mạch có đáp ứng kém với việc ức chế NO synthase. Tuy nhiên, trong sự hiện diện của các chất ức chế cyclooxygenase và NO synthase, apamin và/hoặc TRAM-34, chất chặn KCa2.3 và KCa3.1 tương ứng, đã tiêu diệt sự giảm RPP phản ứng với methacholine hoặc hai chất kích hoạt KCa2.3/KCa3.1, NS309 và SKA-31. Do đó, các kênh KCa2/3 đóng vai trò quan trọng trong việc điều tiết sự tưới máu thận ở chuột và cơ chế này được duy trì trong tình trạng tăng huyết áp, ngay cả khi nặng và liên quan đến tổn thương thận.

Từ khóa

#điều tiết áp lực tưới máu thận #kênh KCa #tăng huyết áp #suy thận #chuột

Tài liệu tham khảo

Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, Weissmann N, Anilkumar N, Shah AM, Schaefer L, Schröder K, Brandes RP (2012) Role of Nox4 in murine models of kidney disease. Free Radic Biol Med 53:842–853 Beenen OH, Mathy MJ, Pfaffendorf M, van Zwieten PA (1996) Vascular responsiveness in isolated perfused kidneys of diabetic hypertensive rats. J Hypertens 14:1125–1130 Benter IF, Francis I, Cojocel C, Juggi JS, Yousif MH, Canatan H (2005) Contribution of cytochrome metabolites of arachidonic acid to hypertension and end-organ damage in SHR treated with l-NAME. Auton Autacoid Pharmacol 25:143–154 Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaisth BP, Kacik M, Hasenau A-L, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Köhler R (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–2332 Bryant CE, Allcock GH, Warner TD (1995) Comparison of effects of chronic and acute administration of NG-nitro-l-arginine methyl ester to the rat on inhibition of nitric oxide-mediated responses. Br J Pharmacol 114:1673–1679 Burnham MP, Johnson IT, Weston AH (2006) Impaired small-conductance Ca2 + -activated K + channel-dependent EDHF responses in type II diabetic ZDF rats. Br J Pharmacol 148:434–441 Büssemaker E, Popp R, Fisslthaler B, Larson CM, Fleming I, Busse R, Brandes RP (2003) Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery. Hypertension 42:562–568 Cachofeiro V, Nasjletti A (1991) Increased vascular responsiveness to bradykinin in kidneys of SHR. Eff N omega-nitro-l-arginine Hypertens 15:683–688 Chadha PS, Haddock RE, Howitt L, Morris MJ, Murphy TV, Grayson TH, Sandow SL (2010) Obesity upregulates IKCa and myoendothelial gap junctions to maintain endothelial vasodilator function. J Pharmacol Exp Ther 335:284–293 Chennupati R, Lamers WH, Koehler SE, De Mey JG (2013) Endothelium-dependent hyperpolarization-related relaxations diminish with age in murine saphenous arteries of both sexes. Br J Pharmacol 169:1486–1499 Collis MG, Vanhoutte PM (1977) Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ Res 41:759–767 Dalsgaard T, Kroigaard C, Simonsen U (2010) Calcium-activated potassium channels—a therapeutic target for modulating nitric oxide in cardiovascular disease? Expert Opin Ther Targets 14:825–837 Damkjaer M, Nielsen G, Bodendiek S, Staehr M, Gramsbergen JB, de Wit C, Jensen BL, Simonsen U, Bie P, Wulff H, Köhler R (2012) Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br J Pharmacol 165:223–234 Félétou M (2011) The endothelium: part 2: EDHF-mediated responses “The classical pathway”. Morgan & Claypool Life Sciences Publisher, San Rafael Félétou M, Vanhoutte PM (2006) EDHF, the complete story. Taylor & Francis CRC press, Boca Raton Félétou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol 291:H985–H1002 Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y, Fujishima M (1992) Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res 70:660–669 Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, Hatae T, Kajiwara N, Yagami K, Murakami K (1993) Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem 268:11617–11621 Garland CJ (2010) Compromised vascular endothelial cell SK(Ca) activity: a fundamental aspect of hypertension? Br J Pharmacol 160:833–835 Giachini FR, Carneiro FS, Lima VV, Carneiro ZN, Dorrance A, Webb RC, Tostes RC (2009) Upregulation of intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats. Transl Res 154:183–193 Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R (2005) Selective blockade of the intermediate-conductance Ca2 + -activated K + channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25:704–709 Grgic I, Kiss E, Kaistha BP, Busch C, Kloss M, Sautter J, Müller A, Kaistha A, Schmidt C, Raman G, Wulff H, Strutz F, Gröne HJ, Köhler R, Hoyer J (2009) Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci 106:14518–14523 Gschwend S, Buikema H, Navis G, Henning RH, De Zeeuw D, Van Dokkum RPE (2002) Endothelial dilatory function predicts individual susceptibility to renal damage in the 5/6 nephrectomised rat. J Am Soc Nephrol 13:292–295 Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL (2011) Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS ONE 6:e16423 Hasenau AL, Nielsen G, Morisseau C, Hammock BD, Wulff H, Köhler R (2011) Improvement of endothelium-dependent vasodilations by SKA-31 and SKA-20, activators of small- and intermediate-conductance Ca2 + -activated K + -channels. Acta Physiol (Oxf) 203:117–126 Hayashi K, Matsuda H, Nagahama T, Fujiwara K, Ozawa Y, Kubota E, Honda M, Tokuyama H, Saruta T (1999) Impaired nitric oxide-independent dilation of renal afferent arterioles in spontaneously hypertensive rats. Hypertens Res 22:31–37 Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD (2005) Spontaneous stroke in a genetic model of hypertension in mice. Stroke 36:1253–1258 Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412 Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 2:1119–1125 Leuranguer V, Gluais P, Vanhoutte PM, Verbeuren TJ, Félétou M (2008) Openers of calcium-activated potassium channels and endothelium-dependent hyperpolarizations in the guinea pig carotid artery. Naunyn Schmiedeberg's Arch Pharmacol 377:101–109 Majid DS, Kopkan L (2007) Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol 34:946–952 Mantelli L, Amerini S, Ledda F (1995) Role of nitric oxide and endothelium-derived hyperpolarizing factor in vasorelaxant effect of acetylcholine as influenced by aging and hypertension. J Cardiovasc Pharmacol 25:595–602 Merrill DC, Thompson MW, Carney CL, Granwehr BP, Schlager G, Robillard JE, Sigmund CD (1996) Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest 97:1047–1055 Michel FS, Man GS, Man RY, Vanhoutte PM (2008) Hypertension and the absence of EDHF-mediated responses favour endothelium-dependent contractions in renal arteries of the rat. Br J Pharmacol 155:217–226 Michel FS, Simonet S, Vayssettes-Courchay C, Bertin F, Sansilvestri-Morel P, Bernhardt F, Paysant J, Silvestre JS, Levy BI, Félétou M, Verbeuren TJ (2008) Altered TP receptor function in isolated, perfused kidneys of nondiabetic and diabetic ApoE-deficient mice. Am J Physiol Renal Physiol 294:F120–129 Milkau M, Köhler R, de Wit C (2010) Crucial importance of the endothelial K + channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction. FASEB J 24:3572–3579 Mishra RC, Belke D, Wulff H, Braun AP (2013) SKA-31, a novel activator of SKCa and IKCa channels, increases coronary flow in male and female rat hearts. Cardiovasc Res 97:339–348 Mishra RC, Wulff H, Cole WC, Braun AP (2014) A pharmacologic activator of endothelial KCa channels enhances coronary flow in the hearts of type 2 diabetic rats. J Mol Cell Cardiol (in press). Morcos SK, Oldroyd S, Haylor J (1997) Effect of radiographic contrast media on endothelium derived nitric oxide-dependent renal vasodilatation. Br J Radiol 70:154–159 Panza JA, Garcia CE, Kilcoyne CM, Quyyumi A, Cannon RO 3rd (1995) Impaired endothelium-dependent vasodilation in patients with essential hypertension: evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation 91:1732–1738 Persson PB, Henriksson J (2011) Good publishing practice in physiology. Acta Physiol (Oxford) 203:403–407 Radtke J, Schmidt K, Wulff H, Köhler R, de Wit C (2013) Activation of KCa3.1 by SKA-31 induces arteriolar dilatation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br J Pharmacol 170:293–303 Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Köhler R, Wulff H (2009) Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75:281–295 Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110:1217–1225 Scotland RS, Madhani M, Chauhan S, Moncada S, Andresen J, Nilsson H, Hobbs AJ, Ahluwalia A (2005) Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase-1 double-knockout mice: key role for endothelium-derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation 111:796–803 Sethi S, Iida S, Sigmund CD, Heistad DD (2006) Renal thrombotic microangiopathy in a genetic model of hypertension in mice. Exp Biol Med (Maywood) 231:196–203 Sheng JZ, Braun AP (2007) Small- and intermediate-conductance Ca2 + -activated K + channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am J Physiol Cell Physiol 293:C458–467 Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Kohler R (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2 + -activated K + channel. Circ Res 99:537–544 Simeoni U, Massfelder T, Saussine C, Judes C, Geisert J, Helwig JJ (1994) Involvement of nitric oxide in the vasodilatory response to parathyroid hormone-related peptide in the isolated rabbit kidney. Clin Sci (Lond) 86:245–249 Simonet S, Cousin C, Vayssettes-Courchay C, Verbeuren TJ (2007) Endothelial dysfunction in isolated perfused kidneys of stroke-prone spontaneously hypertensive rats under high-salt diet. Arch Malad Coeur Vaisseaux 100:16 Simonet S, Isabelle M, Bousquenaud M, Clavreul N, Félétou M, Vayssettes-Courchay C, Verbeuren TJ (2012) K(Ca) 3.1 channels (IK(Ca)) maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats submitted to chronic inhibition of nitric oxide synthase. Br J Pharmacol 167:854–867 Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M (2012) Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 305:F505–518 Stankevicius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ, Simonsen U (2006) Combination of Ca2+ -activated K + channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 149:560–572 Strøbæk D, Teuber L, Jørgensen TD, Ahring PK, Kjær K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B (2004) Activation of human IK and SK Ca2 + -activated K + channels by NS 309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochem Biophys Acta 1665:1–5 Tang EH, Ku DD, Tipoe GL, Félétou M, Man RY, Vanhoutte PM (2005) Endothelium-dependent contractions occur in the aorta of wild-type and COX2−/−knockout but not COX1−/−knockout mice. J Cardiovasc Pharmacol 46:761–765 Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2 + -activated K + (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131 Vanhoutte PM, Shimokawa H, Tang EH, Félétou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196:193–222 Vargas F, Osuna A, Fernández-Rivas A (1996) Vascular reactivity and flow-pressure curve in isolated kidneys from rats with N-nitro-l-arginine methyl ester-induced hypertension. J Hypertens 14:373–379 Vargas F, Osuna A, Fernández-Rivas A (1997) Abnormal renal vascular reactivity to acetylcholine and nitroprusside in aging rats. Gen Pharmacol 28:133–137 Weston AH, Porter EL, Harno E, Edwards G (2010) Impairment of endothelial SKCa channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br J Pharmacol 160:836–843 Wölfle SE, Schmidt VJ, Hoyer J, Köhler R, de Wit C (2009) Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovasc Res 82:476–483 Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2 + -activated K + channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci 297:8151–8156 Xue B, Pamidimukkala J, Hay M (2005) Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol 288:H2177–1284