Prescribing Gaussian curvature on S2

Acta Mathematica - Tập 159 Số 0 - Trang 215-259 - 1987
Shinan Chang1, Paul Yang2
1University of California
2University of Southern California

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aubin, T., Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire par la transformation conforme de la courbure scalaire.J. Funct. Anal., 32 (1979), 148–174.

Aubin, T.,The scalar curvature in differential geometry and relativity. Holland 1976, pp. 5–18.

Bahri, A. &Coron, J. M., Une théorie des points critiques à l'infini pour l'equation de Yamabe et le problème de Kazdan-Warner.C. R. Acad. Sci. Paris Sér. I, 15 (1985), 513–516.

Chang, S. Y. A. & Yang, P. C., Conformal deformation of metric onS 2. To appear inJournal of Diff. Geometry.

Escobar, J. F. & Schoen, R., Conformal metrics with prescribed scalar curvature. Preprint.

Hartman, P.,Ordinary differential equations. Basel Birkhäuser (1982).

Hersch, J., Quatre propriétés isopérimétriques de membranes sphériques homogènes.C. R. Acad. Sci. Paris Ser. I, 270 (1970), 1645–1648.

Hong, C. W., A best constant and the Gaussian curvature. Preprint.

Kazdan, J. &Warner, F., Curvature functions for compact 2-manifold.Ann. of Math. (2), 99 (1974), 14–47.

— Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature.Ann. of Math. (2), 101 (1975), 317–331.

Moser, J., A sharp form of an inequality by N. Trudinger.Indiana Univ. Math. J., 20 (1971), 1077–1091.

— On a non-linear problem in differential geometry.Dynamical Systems (M. Peixoto, editor), Academic Press, N.Y. (1973).

Mostow, G. D., Some new decomposition theorems for semi-simple groups.Mem. Amer. Math. Soc., 14 (1955).

Onofri, E., On the positivity of the effective action in a theory of random surface.Comm. Math. Phys., 86 (1982), 321–326.

Onofri, E. &Virasoro, M., On a formulation of Polyakov's string theory with regular classical solutions.Nuclear Phys. B, 201 (1982), 159–175.

Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differential Geom., 20 (1985), 479–495.