Preparation of poly(acrylamide‐co‐acrylic acid)/silica nanocomposite microspheres and their performance as a plugging material for deep profile control

Wiley - Tập 134 Số 46 - 2017
Jingqi Ji1,2,3, Chenlu Zeng2, Yangchuan Ke1,2,3, Yang Pei1,2,3
1CNPC Nanochemistry Key Laboratory Beijing 102249 China
2College of Science, China University of Petroleum, Beijing 102249, China
3Nanotechnology Center of Energy Resources, China University of Petroleum, Beijing 102249, China

Tóm tắt

ABSTRACTIn this work, poly(acrylamide‐co‐acrylic acid)/silica [poly(AM‐co‐AA)/SiO2] microspheres were prepared by inverse phase suspension polymerization in the presence of γ‐3‐(trimethoxysilyl) propyl methacrylate (or 3‐methacryloxypropyltrimethoxysilane) modified SiO2. The effects of SiO2 nanoparticles on tuning morphology and properties of the nanocomposite microspheres were studied. Plugging ability and oil displacement performance were also systematically investigated by single‐ and double‐tube sand pack models. The results showed that SiO2 nanoparticles can effectively adjust surface smoothness, swelling behavior, and thermal stability of the nanocomposite microspheres. Compared with pure copolymer microspheres, these nanocomposite microspheres also displayed better salt tolerance and shear resistance. Such multifunctional nanocomposite microspheres can provide effective plugging in the high‐permeability channels and can also achieve deep profile control. The highest plugging rate can be 86.11% and the oil recovery for low‐permeability tube was enhanced by 19.69%. This research will provide a candidate material for the further enhanced oil recovery (EOR) research and supply the theoretical support for profile control system in field application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45502.

Từ khóa


Tài liệu tham khảo

10.1016/j.colsurfa.2015.03.042

10.2516/ogst/2009057

10.1016/j.fuel.2014.07.065

10.1016/j.jcis.2015.07.006

10.1016/j.conbuildmat.2016.07.049

10.1177/0021998313514260

10.1021/cr068035q

10.1016/j.jpowsour.2004.08.002

10.1016/j.jiec.2016.04.016

10.1016/j.apsusc.2012.08.062

10.1016/j.triboint.2016.08.018

10.1002/app.35672

Wu T. B., 2006, Eur. Polym. J., 42, 274, 10.1016/j.eurpolymj.2005.08.002

10.1016/j.polymer.2007.07.068

10.1016/j.colsurfa.2015.11.006

10.1007/s10971-013-3015-8

10.1002/mame.200390031

10.1016/j.micromeso.2015.04.028

10.1021/am401689s

10.1016/j.compscitech.2014.02.003

10.1002/ppap.201100070

10.1016/j.polymer.2007.05.060

10.1002/app.43364

10.1021/acs.iecr.5b02717

10.1002/app.43666

10.1016/j.cej.2014.03.101

10.3390/en9121037

10.1007/s00396-015-3512-0

10.1021/acs.iecr.6b05036

10.3390/en7063858

10.1002/app.40876

10.1016/0021-9797(68)90272-5

10.1016/j.matlet.2011.11.112

10.1016/j.carbpol.2016.06.054

Yang S. L., 2011, Oil and Gas Layers in Physics

Lin M. Q., 2009, Acta Pet. Sin., 20, 48

10.1016/j.jcis.2014.03.019

10.1016/j.materresbull.2007.03.027

10.1177/0954008314563058

10.1016/j.compscitech.2013.05.018

10.1002/app.27863

10.1177/0954008313487392

10.1016/j.polymer.2007.03.059

10.1016/j.polymdegradstab.2011.11.006